Published on in Vol 11, No 1 (2022): Jan-Jun
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/28366, first published
.

Journals
- García-García F, Lee D, Mendoza-Garcés F, Irigoyen-Miró S, Legarreta-Olabarrieta M, García-Gutiérrez S, Arostegui I. Automated location of orofacial landmarks to characterize airway morphology in anaesthesia via deep convolutional neural networks. Computer Methods and Programs in Biomedicine 2023;232:107428 View
- Zhou C, Wang Y, Xue Q, Yang J, Zhu Y. Predicting difficult airway intubation in thyroid surgery using multiple machine learning and deep learning algorithms. Frontiers in Public Health 2022;10 View
- Senthilnathan M, Kundra P. Predictive Machine Learning Algorithms in Anticipating Problems with Airway Management. Airway 2023;6(1):4 View
- Naik N, Mathew P, Kundra P. Scope of artificial intelligence in airway management. Indian Journal of Anaesthesia 2024;68(1):105 View
- Dougherty J, Paxton J. Recent Technological Advances in Airway Management. Current Emergency and Hospital Medicine Reports 2024;12(1):32 View
- García-García F, Lee D, Mendoza-Garcés F, García-Gutiérrez S. Reliable prediction of difficult airway for tracheal intubation from patient preoperative photographs by machine learning methods. Computer Methods and Programs in Biomedicine 2024;248:108118 View
- De Rosa S, Bignami E, Bellini V, Battaglini D. The Future of Artificial Intelligence Using Images and Clinical Assessment for Difficult Airway Management. Anesthesia & Analgesia 2025;140(2):317 View
- Kim J, Jung H, Lee S, Hou J, Kwon Y. Improving difficult direct laryngoscopy prediction using deep learning and minimal image analysis: a single-center prospective study. Scientific Reports 2024;14(1) View
- Liao Z, Mathur N, Joshi V, Joshi S. The Promise of Artificial Intelligence in Neuroanesthesia: An Update. Journal of Neuroanaesthesiology and Critical Care 2024;11(03):167 View
- Kim J, Han S, Hwang S, Lee J, Kwon Y. Machine Learning Predictions and Identifying Key Predictors for Safer Intubation: A Study on Video Laryngoscopy Views. Journal of Personalized Medicine 2024;14(9):902 View
- Sezari P, Kohzadi Z, Dabbagh A, Jafari A, Khoshtinatan S, Mottaghi K, Kohzadi Z, Rahmatizadeh S. Unravelling intubation challenges: a machine learning approach incorporating multiple predictive parameters. BMC Anesthesiology 2024;24(1) View
- Thiebaud P. Gestion des voies aériennes en médecine d’urgence. EMC - Médecine d 'urgence 2023;17(3):1 View
- Зайцев А, Сорокин А, Зайцев Ю, Дубровин К, Усикян Э. Роль искусственного интеллекта в прогнозировании трудных дыхательных путей у взрослых: обзор литературы. Annals of Critical Care 2025;(1):110 View
- Srivilaithon W, Thanasarnpaiboon P. Performance of machine learning models in predicting difficult laryngoscopy in the emergency department: a single-centre retrospective study comparing with conventional regression method. BMC Emergency Medicine 2025;25(1) View
- Wilk M, Pikiewicz W, Florczak K, Jakóbczak D. Use of Artificial Intelligence in Difficult Airway Assessment: The Current State of Knowledge. Journal of Clinical Medicine 2025;14(5):1602 View
- Guo M, Hou Y, Liu Y, Yang B, Qiao C, Li J. From algorithms to airways: Applying artificial intelligence to enhance airway assessment, management, and training. Trends in Anaesthesia and Critical Care 2025;61:101548 View
Books/Policy Documents
- Wu C, Mathur P. Artificial Intelligence in Clinical Practice. View