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Abstract

Background: Accurate monitoring of moderate-to-vigorous physical activity (MVPA) is critical for advancing public health
research and personalized interventions. Traditional accelerometry methods, reliant on regression-derived intensity cut points,
exhibit significant misclassification errors and poor generalizability to the free-living environment. Recent advancements in
machine learning (ML) and deep learning (DL) offer promising alternatives for automated MVPA detection.

Objective: This scoping review synthesizes evidence on ML and DL techniques for MVPA estimation and prediction using
accelerometer data, focusing on performance, algorithm bias, sensor configurations, and translational potential.

Methods: Following PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for
Scoping Reviews) guidelines, we conducted a systematic search across PubMed, IEEE Xplore, and Web of Science (February
1995-April 2025), supplemented by snowball citation tracking. Two independent reviewers screened titles, abstracts, and full
texts against predefined inclusion criteria. Data from included studies were charted by one reviewer and verified by the other,
extracting details on study characteristics, sensor configuration, ML and DL techniques, validation methods, and performance
metrics. A narrative synthesis approach was used, guided by 6 research questions, to collate and summarize the findings. The
synthesis process was rigorously reviewed by multiple authors to ensure consistency.

Results: Of 1938 screened studies, 40 met the inclusion criteria, with 4 studies added by follow-up manual searches. While
traditional ML models (eg, random forest, support vector machine) achieved strong laboratory performance with F1-score of
87.4%-100% and accuracy of 87.9%-100%, their real-world performance declined by 8.0%-13.3% in F1-score and 6.6%-12.2%
in accuracy, due to environment noise and device heterogeneity. DL architectures (eg, convolutional neural networks, transformers)
achieved robust performance by leveraging raw signal dynamics with an F1-score of 71.9%-79.8% and an accuracy of 87.9%-100%
in free-living settings. Hybrid models (eg, convolutional neural networks and long short-term memory) demonstrated state-of-the-art
performance (F1-score 91.4%-98.4%, accuracy 97.7%-99.0%). Wrist-worn sensors dominated studies (30/40, 75%) and matched
hip/thigh placements in lab settings (mean F1-scores: 86.5%-88.6%), but multisensor configurations (wrist + hip) yielded the
highest accuracy (89.7%). Key challenges included algorithmic bias reducing applicability in older adult populations, and impaired
reproducibility, with only 42.5% (17/40) of studies sharing code and data. Emerging opportunities are noted for edge computing
and hybrid models integrating contextual data.

Conclusions: ML and DL significantly enhance MVPA monitoring by automating feature extraction and improving adaptability
to free-living variability. However, persistent gaps in generalizability, inconsistent validation protocols, and transparency deficits
hinder translation. The findings support the need for future research to prioritize inclusive model training, standardized reporting
frameworks, and open science practices to realize the equitable potential of artificial intelligence–driven physical activity
assessment.
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Introduction

Moderate-to-vigorous physical activity (MVPA) is defined as
activities requiring specific metabolic equivalent of tasks
(METs), such as 3 METs or 4 METs [1,2]. It is critical to
preventive health, linked to reduced risks of cardiovascular
disease [3,4], diabetes [5], and premature mortality [6]. Current
guidelines, such as those from the World Health Organization,
emphasize MVPA as a priority; for example, children and
adolescents are advised to engage in MVPA with an average of
60 minutes per day across the week to improve health [7,8].
Additionally, accurate measurement of physical activity is
critical for identifying the individual, environmental, and
sociocultural determinants and evaluating the efficacy of
intervention strategies. Accelerometer-based motion sensors,
owing to their compact design, durability, and low cost, have
emerged as the predominant tool for objective physical activity
assessment in diverse populations [9-12].

Traditional accelerometry methods, though widely adopted,
have historically been underused in research due to reliance on
intensity-based cut points derived from linear regression models
or receiver operating curves [13,14]. These approaches establish
thresholds by predicting energy expenditure from accelerometer
counts. However, proprietary count-based thresholds, such as
Freedson’s cut points [15], exhibit significant misclassification
of activity intensity (eg, sedentary, light, moderate, vigorous
intensity) of approximately 50% in adults [16] and 28%-45%
in children and adolescents [17-20]. Such methods fail to
account for biomechanical nuances (eg, energy expenditure
differences between walking on flat terrain vs uphill terrain) or
uncontrolled variables in free-living environments, such as
nonexercise movements [21,22]. The proliferation of conflicting
regression-derived cut points has further complicated cross-study
comparisons [23]. While these thresholds remain standard for
quantifying activity intensity, their inability to accurately predict
intensity across diverse activities is increasingly acknowledged
[22].

The advent of machine learning (ML) and deep learning (DL)
has revolutionized intensity recognition by enabling feature
extraction and classification from raw accelerometer signals
[24,25]. Compared with traditional cut point methods, ML
models (eg, random forests [RFs] and support vector machines
[SVMs]) leverage time- and frequency-domain features from
high-resolution triaxial data (eg, 30-100 Hz) to reduce energy
expenditure errors by 25%-50% in school-age children [19,26].
More recently, DL architectures, such as a convolutional neural
network (CNN) for local temporal pattern detection, a long
short-term memory network (LSTM) for modeling activity
sequences, Transformers for long-range dependency learning,
and hybrid models (eg, convolutional neural network and long
short-term memory [CNN-LSTM]), have further advanced the

field. These models identify MVPA bouts by modeling temporal
dependencies in continuous data streams [27].

Three distinct methodological approaches have emerged for
MVPA detection: The first one is based on activity
classification, which directly identifies MVPA from
activity-specific movement patterns [28,29]. The second one is
based on energy expenditure prediction from predefined MET
thresholds (eg, ≥3 METs) [19,30]. The third one is based on an
end-to-end DL architecture that automates hierarchical feature
extraction from raw accelerometer signals to classify activity
intensity directly or through energy expenditure estimation
[31-33]. Hybrid models, such as CNN-LSTM, further enhance
performance by integrating spatial feature extraction (via
convolutions) with temporal modeling (via recurrent layers) to
identify subtle biomechanical patterns (eg, stride variability
during running) and contextual transitions between movements
[34]. However, over 60% of models remain inaccessible due to
unshared code or validation protocols, perpetuating a “new
cut-point conundrum” that undermines cross-study comparability
and clinical utility [35].

Other shortcomings further undermine progress in
MVPA-specific research. First, lab-based findings fail to be
generalized to real-world conditions. For example, RF achieves
>90% accuracy in lab settings [36,37], but its free-living
performance degrades dramatically to around 66% [38].
However, only 10% of studies validate models in the real world
[39], limiting translational relevance. Second, disparities in
validation protocols, such as settings (laboratory-controlled vs
free-living environments), or device placement (hip vs wrist),
complicate cross-study comparisons. For instance, models
trained on hip-based ActiGraph data often underperform when
applied to wrist-worn devices [40]. Third, ethical and
reproducibility challenges, such as algorithmic bias against
older adults or clinical cohorts, and limited code or data sharing,
hinder the translation.

Several systematic reviews have explored the broader field of
activity recognition using accelerometers and artificial
intelligence (AI). However, a focused synthesis on AI-driven
MVPA detection is lacking. Previous reviews have either
focused on physical activity type detection in real-life conditions
rather than intensity-specific thresholds [41], provided the
general methodologies of human activity recognition using
wearable sensors and ML without a systematic analysis of
performance and bias in MVPA classification [42-44], examined
the validation of accelerometer-based monitors using ML but
not within the specific context of MVPA’s lab-to-real-world
gap [27], or highlighted the critical issue of accessibility and
reproducibility of novel analytical models but not connected
them to the development of equitable MVPA models [35]. Other
reviews have focused on specific aspects, such as calibration
techniques [45], sport-specific movements [46], or compared
DL architectures like CNN and LSTM [47]. While 2 recent
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reviews touch on predicting physical activity intensity from
smartphones or smartwatches [48,49], they do not encompass
the full spectrum of research-grade and wearable sensors, model
architectures, and the critical synthesis of translational
challenges presented here.

Therefore, this scoping review is the first to systematically scope
and synthesize the literature exclusively on ML and DL
techniques for MVPA intensity. We uniquely quantify the
performance of MVPA detection methods as a function of the
sensors used, sensor placement, target populations, feature
extraction strategies, model architectures, lab-to-real-world
settings, and look at possible algorithmic bias introduced by the
restricted age and health status of the tested participants.

Methods

Overview
This scoping review follows the Arksey and O’Malley
framework, which includes 5 key stages: identifying the research
question (RQ), identifying relevant studies, selecting studies,
charting the data, and collating, summarizing, and reporting the
results. The PRISMA-ScR (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses extension for Scoping
Reviews) was also consulted to ensure methodological rigor.
EndNote X9 (Clarivate Analytics) was used for reference
management, deduplication, and the screening process.

Identify the Research Questions
This paper presents a scoping review that synthesizes
advancements in ML- and DL-driven MVPA estimation and
prediction from accelerometer data. The review aims to answer
the following RQs:

• RQ1: What ML and DL techniques have been and are
currently used for MVPA detection from accelerometer
data?

• RQ2: How do accelerometer specifications (eg, sensor type,
sampling rate), body placement (eg, wrist, hip, and thigh),
and multisensor configurations influence model
performance and generalizability?

• RQ3: What’s the magnitude of the performance gap
between laboratory-controlled and free-living environments,
and what potential factors contribute to this disparity?

• RQ4: How do validation protocols vary across studies, and
how do inconsistencies in these protocols limit cross-study
comparability and clinical utility?

• RQ5: To what extent do current models exhibit biased
results, preventing generalization to older adult or clinical
populations?

• RQ6: What proportion of studies adhere to open science
practices, and how do transparency gaps hinder
reproducibility, scalability, and equitable deployment?

Identify Relevant Studies
To ensure a comprehensive and focused literature search, we
used a multi-step process. The search strategy was developed
and refined in discussion with all the authors, who have
specialized expertise in systematic review methodologies and
database search strategies. Initially, we conducted a preliminary

manual search to identify eligible studies and determine relevant
databases and query terms. The search strategy included the
following keywords and their combinations: “artificial
intelligence” (eg, “machine learning” and “deep learning”),
“accelerometer” (eg, “wearable device,” “smartphone,”
“smartwatch,” and “inertial measurement unit (IMU)”), and
“moderate-to-vigorous physical activity” (eg, MVPA, “physical
activity intensity,” and “energy expenditure”).

The comprehensive search was conducted across multiple
databases, including PubMed, IEEE Xplore, and Web of
Science. The search was conducted on April 4, 2025. To further
enhance the comprehensiveness of our search, a manual citation
search was conducted using reference lists of relevant studies
to identify other potentially eligible studies. The detailed search
strategies used to find relevant studies for this scoping review
are described in Multimedia Appendix 1.

Selection of Eligible Studies
We followed the steps outlined in the PRISMA (the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
extension guidelines) flow diagram to select eligible studies.
The study selection process involved 2 independent reviewers
(YZ and SRBVDV) who screened titles and abstracts, followed
by full-text assessment. Any discrepancies were resolved
through discussion. This process is illustrated in the PRISMA
flow diagram. The inclusion criteria were as follows: (1) studies
that applied ML or DL technique; (2) studies that used
accelerometry, no matter any location, number of sensors, or
any type of devices, such as accelerometers or smartphones or
smartwatches; (3) studies that estimated of MVPA as the
outcome; (4) studies that focused on human, any age group or
any health status; and (5) peer-reviewed studies published in
English.

The exclusion criteria were as follows: (1) studies that did not
involve ML or DL techniques (2) studies that relied on
multimodal sensor systems (eg, integrated heart rate monitors
with accelerometers) or nonaccelerometric data (eg, video-based
estimation); (3) studies that focused on nonhuman or
nonphysical activity contexts, such as only differentiating
sedentary behavior from nonsedentary activity; (4) studies that
focused on general activity recognition or physical activity
intensity classification without MVPA-specific analysis; (5)
studies that focused on theoretical models without empirical
validation; (6) studies that were not peer reviewed or reported
in a non-English language; and (7) studies without full text
available.

Data Charting
Duplicates were identified and removed using the automated
deduplication feature in EndNote X9, which was configured to
define duplicates based on matching author, publication year,
and title field. This automated process was followed by a manual
check to ensure the thoroughness and accuracy of deduplication.
Then, guided by the RQs, the following details were extracted
from included studies: study characteristics (eg, author,
publication year, population characteristics), sensor
configuration (brand and model, placement, sampling rate), ML
or DL techniques used to detect MVPA (features choosing
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strategy, features selected, MVPA classification technique),
ground truth validation of MVPA (via indirect calorimetry [IC]
or direct observation [DO]), validating setting (lab or free-living
conditions), classification performance metrics (F1-score and
accuracy), and code availability. In this review, only the F1-score
and accuracy for MVPA classification were extracted. In cases
where these metrics were not explicitly reported in the primary
studies, they were inferred from the provided confusion matrices
using the standard functions. Accuracy, representing the
proportion of total correct predictions, was calculated as:

The F1-score, the harmonic mean of precision and recall, was
calculated as

Where:

In which, TP is the number of true positives, TN is the number
of true negatives, FP is the number of false positives, and FN
is the number of false negatives.

Collating, Summarizing, and Reporting the Results
To answer the RQs, the results are organized into 6 sections:
evolution of feature engineering and model architectures,
task-specific insights, sensor performance, validation practices,
algorithmic bias, and reproducibility crisis.

A narrative synthesis approach was used, guided by the
predefined RQs. The extracted data were summarized
quantitatively (using frequencies and percentages) and
qualitatively (identifying key themes and trends). To ensure
rigor and trustworthiness, the data charting and initial synthesis
were performed by one author (YZ) and critically reviewed by
the others (SRBVDV, EJCDG, and PC) for accuracy and
consistency.

Ethical Considerations
This scoping review synthesized findings from previously
published research involving human participants. No new
participants were recruited, and no new primary data were
collected for this review. Consequently, separate ethical approval
for this specific synthesis was not required. All original studies
included in this review were expected to have obtained
appropriate ethical approval from their relevant institutional
review boards or ethics committees and informed consent from
participants, consistent with ethical standards for human
participation research involving sensor data. We noted that the
majority of included studies explicitly reported ethical approval
within their publications. For studies where an explicit ethics
statement was not found in the publication, we acknowledge
this limitation in reporting transparency. As this review analyzed
results reported in published literature and did not involve direct
access to or reanalysis of the raw accelerometer data from the
original studies, specific data licenses or permissions beyond
the published findings were not required.

Results

Overview
A total of 1938 articles were identified from PubMed (n=209),
IEEE Xplore (n=187), and Web of Science (n=1542). After
removing 11.8% (229/1938) of duplicates, 88.2% (1709/1938)
of the articles were included in the title and abstract screening
phase. After this phase, 156 (8.1%) were screened for eligibility
in the full-text screening phase. As a result, 36 articles met the
inclusion criteria. In addition, 4 studies were included from
manual searches. In total, 40 articles were included in this
scoping review, shown in Figure 1.
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Figure 1. PRISMA flow diagram of study selection. AI: artificial intelligence; MVPA: moderate-to-vigorous physical activity; PA: physical activity.

Overview of Included Studies
Table 1 provides a summary of included studies, including the
author’s name and publication year, mean age of participants
(SD), number of participants, sensor brand and specific model,
number of sensors tested, the placement of sensors, MVPA
classification techniques used, validation setting (lab or

free-living), assessment of MVPA ground truth, and code
availability. The information on the country where the test was
conducted, sampling rate, feature choosing strategy, window
length, feature selected, and F1-score and accuracy of model
detecting MVPA was listed in Multimedia Appendix 2
[19,28,29,31,33,34,36-38,50-81].
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Table 1. The summary of included studies (N=40 studies, ranked by health condition and alphabetically by author names).

Code availabil-
ity

Ground
truth

Validation
setting

MVPAa clas-
sification
technique

Number of
sensors (place-
ment)

Sensor brand/
modelN

Age (years),
range

Age (years),
mean (SD)Reference

Healthy condition

NoDOeFree-livingRFc and

SVMd

2 (hip, wrist)ActiGraph
GT3X +

31—b4 (0.9)Ahmadi et al
[50]

YesDOFree-livingRF2 (hip, wrist)ActiGraph
GT3X +

31—4 (0.9)Ahmadi et al
[51]

YesPREfLabRF1 (hip)ActiGraph
GT3X +

50—13.9 (3)Ahmadi et al
[52]

YesDOFree-livingRF2 (hip, wrist)ActiGraph
GT3X +

31—4 (0.9)Ahmadi et al
[38]

NoDOLab and
free-living

RF2 (both wrists)MEMS and
ActiGraph
GT9X

102—55.8 (12.4)Ahmadi et al
[53]

NoDO, ICgLab and
free-living

RF2 (both wrists)MEMS and
ActiGraph
GT9X

52—55.8 (12.4)Ahmadi et al
[53]

NoDOFree-livingRF1 (wrist)Axivity AX315118-91—Ahmadi et al
[53]

NoPRELabk-NNi and
RF

1 (chest)LSM9DS1NR—NRhAndò et al
[36]

NoICLabXGBoostj1 (wrist)ActiGraph
GT3X-BT

247—72.4 (7.1)Bai et al [54]

NoPRELab1D-CNN-

LSTMk
3 (pocket,
backpack,
hand)

Samsung
Galaxy S7

4218-5629 (0)Barua et al
[34]

NoICFree-livingSVM1 (wrist)smartwatch
“mumu”

18—12.3 (1.0)Chen et al
[55]

NoICFree-livingSVM1 (wrist)smartwatch
“mumu”

24—24.9 (2.6)Chen et al
[55]

NoICLabRF2 (wrist)ActiGraph
GT3X+ and

40—55.2 (17.8)Davoudi et al
[56]

Samsung
smartwatch

NoDOFree-livingRF1 (wrist)Axivity AX315318-91—Doherty et al
[57]

YesIC and
PRE

LabANNl and

DTm

2 (hip, thigh)ActiGraph
GT3X+ and
actiPAL

49—23.9 (5.3)Ellingson et al
[58]

On requestICLabRF1 (hip)ActiGraph
GT3X+

51—23.5 (4.6)Ellingson et al
[59]

NoDOLabANN1 (hip); 2 (hip,
wrist); 1

Hookie
AM20; Acti-

22;
52; 9;
8

20-3027.5 (11.2);
13.7 (3.1);
27.2 (3.3)

Farrahi et al
[60]

(wrist); 2
(wrists)

graph GT3X+;
Colibri inertial
measurement
unit; Xsens
MTx inertial
measurement
unit

NoDOFree-livingBiLSTMn,
RF, ANN,

1 (wrist)Axivity AX315118-91—Farrahi et al
[31]

SVM, DT,

and NBo
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Code availabil-
ity

Ground
truth

Validation
setting

MVPAa clas-
sification
technique

Number of
sensors (place-
ment)

Sensor brand/
modelN

Age (years),
range

Age (years),
mean (SD)Reference

NoICLabANN1 (hip)ActiGraph
GT1M

277—38 (12.4)Freedson et al
[61]

NoPRELabANN1 (hip)ActiGraph
GT3X +

11—4.8 (0.9)Hagenbuchner
et al [29]

On requestDOFree-livingANN and
DT

3 (hip, both
wrists)

ActiGraph
GT3X-BT

27—9.4 (2.1)Hibbing et al
[62]

On requestICLabANN and
DT

2 (hip, wrist)ActiGraph
GT3X+

54—10.0 (2.2)Hibbing et al
[62]

NoHip cut
points

Free-livingk-meansp1 (wrist)ActiGraph
GT3X-BT

34—4.0 (0.5)Li et al [63]

NoICLabDT, RF, XG-
Boost, and

LASSOq

1 (wrist)ActiGraph
GT3X-BT

253—61.7 (17.7)Mardini et al
[64]

NoPRELabANN4 (thigh, hip,
both wrists)

ActiGraph
GT3X+ and
GENEActiv

40—22.0 (4.2)Montoye et al
[65]

NoICLabANN1 (thigh)activPAL341—22.0 (4.2)Montoye et al
[66]

YesDOLab and
free-living

RF2 (hip, wrist)ActiGraph
GT9X Link

48—40.8 (19.2)Montoye et al
[67]

YesHip cut
points

Free-livingCNNr1 (wrist)ActiGraph
GT3X +

119—45.0 (11.0)Nawaratne et
al [68]

NoICLabAdditive re-
gression tree

2 (wrist, hip)GENEActiv
and ActiGraph

33—69.3 (8.0)Nnamoko et al
[69]

NoICLabRF, ANN, k-
NN, SVM,
and gradient
boosting

2 (wrist, upper
arm)

ActiGraph
GT3-X;
SenseWear
Armband

89—44.4 (14.1);
31.9 (10.2)

O'Driscoll et
al [70]

NoPRELabQDAs and

HMMt

1 (hip)Actigraph
MTI 7164

6—24.8 (4.2)Pober et al
[71]

YesICLabRF6 (both hips,
both wrists,
thigh, lower
back)

ActiGraph
GT3X +, GE-
NEActiv, and
Axivity AX3

67—80.2 (3.7)Skjødt et al
[72]

NoICLabANN1 (wrist)Actigraph
model 7164

4821-6935 (0)Staudenmayer
et al [73]

NoICLabRF and DT1 (wrist)ActiGraph
GT3X+

2020-3924.1 (0)Staudenmayer
et al [74]

NoICLabANN1 (hip)ActiGraph
GT1M

100—11 (2.7)Trost et al
[19]

NoICLabANN1 (hip)ActiGraph
GT1M

100—11 (2.7)Trost et al
[19]

On requestDO, ICLabRF and
SVM

2 (hip, wrist)ActiGraph
GT3X +

11—4.8 (0.9)Trost et al
[28]

NoDOFree-livingRF and
HMM

1 (wrist)Axivity AX314818-91—Tsanas [75]

NoDOFree-livingRF and
HMM

1 (wrist)Axivity AX315218-91—Walmsley et
al [76]
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Code availabil-
ity

Ground
truth

Validation
setting

MVPAa clas-
sification
technique

Number of
sensors (place-
ment)

Sensor brand/
modelN

Age (years),
range

Age (years),
mean (SD)Reference

NoDOFree-livingViT-BiL-

STMu,
CNN-BiL-

STMv,

ViTw, CNN,
and BiLSTM

1 (wrist)Axivity AX315118-91—Wang et al
[33]

NoICLabRF2 (both thighs)GENEActiv40—73.5 (6.3)Wullems et al
[77]

NoDO, ICLabRF1 (thigh)GENEActiv20—70.0 (12.0)Wullems et al
[78]

NoICLab and
free-living

BiLSTM1 (arm)Custom iner-
tial measure-
ment unit sen-
sor

24—5.0 (0.9)Zhou et al
[79]

Clinical conditions

NoICLabk-NN, RF,
and XG-
Boost

5 (both wrists,
waist, both
wrists)

GENEActiv
and ActiGraph

35CF;

28hy

—12.0 (2.8)Bianchim et al
[37]

NoNRFree-livingRF1 (wrist)Empatica E4
wristband

20T1Dz—44.9 (5.0)Cescon et al
[80]

aMVPA: moderate-to-vigorous physical activity.
bNot applicable.
cRF: random forest.
dSVM: support vector machine.
eDO: direct observation.
fPRE: predefined activity schedule.
gIC: indirect calorimetry.
hNR: not reported.
ik-NN: k-nearest neighbor.
jXGBoost: extreme gradient boosting.
k1D-CNN-LSTM: one directional CNN-LSTM.
lANN: artificial neural network.
mDT: decision tree.
nBiLSTM: bidirectional long short-term memory.
oNB: naive Bayes.
pk-means: k-means cluster analysis.
qLASSO: least absolute shrinkage and selection operator.
rCNN: convolutional neural network.
sQDA: quadratic discriminant analysis.
tHMM: hidden Markov model.
uViT-BiLSTM: vision transformer bidirectional long short-term memory.
vCNN-BiLSTM: convolutional neural network and bidirectional long short-term memory.
wViT: vision transformer.
x35CF: 35 participants with cystic fibrosis.
y28h: 28 healthy participants in the study.
z20T1D: 20 participants with type 1 diabetes.

A total of 40 studies (2006-2025) met the inclusion criteria,
with 62.5% (n=25) published between 2020 and 2025, reflecting
the growing interest in AI-driven MVPA estimation.

Most studies (37/40 studies, 92.5%) targeted healthy
populations, while only 5% (2/40 studies) addressed clinical

cohorts, that is, cystic fibrosis [37] and type 1 diabetes [80],
with one study (2.5%) did not specify the characteristics of
participants [36].

Eleven studies (27.5%, 11/40) focused on children and
adolescents [19,28,29,38,50-52,55,62,63,79], 40% (16/40) were
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on adults (18-60 years old) [34,53,55,56,58,59,61,65-68,70,
71,73,74], and 17.5% (7/40) were on old adults (60 years or
older) [54,64,69,72,77,78], and 2 studies reported on the clinical
conditions (ie, cystic fibrosis [37] and type 1 diabetes [80]).
The remaining 7 studies (17.5%) tested their models using public
datasets in adults, such as Capture-24 and Energy-24 (age range
18-91 years) [31,33,53,57,75,76] and a study with multiple
datasets, including UOULU (University of Oulu), OSU (Oregon
State University), the PAMAP2 Physical Activity Monitoring
dataset (the UCI Machine Learning Repository), and the Daily
and Sports Activities (the UCI Machine Learning Repository)
[60]. Among these, Chen et al [55] covered the analyses both
on children and adults; Andò et al [36], though not reporting
participant ages, was contextually aligned with older adult
research due to its emphasis on age-associated risks of physical
inactivity among older adults and its heavy reliance on
references related to older adults; Capture-24 and Energy-24
datasets [31,33,53,57,75,76] were grouped into adult, due to
the age distributions: 72% of participants were younger than
53 years, with only 22.5% aged 53 years or older [82]; Farrahi
et al [60], which included 4 datasets with an average participant
age of about 19 years, was classified under adults.

ActiGraph (30/40, 75%) and GENEActiv (6/40, 15%) were the
most common sensors using acceleration sensors to identify
MVPA, with limited use of consumer wearables, for example,
other brands of accelerometers (eg, Axivity AX3, activPAL;
9/40, 22.5%), inertial measurement units (5/40, 12.5%),
smartwatches (2/40, 5%), smartphones (1/40, 2.5%), wristbands
(1/40, 2.5%), and armbands (1/40, 2.5%).

Lab-controlled validations predominated (30/45 analyses,
66.7%; some studies had multiple analyses); 33.3% of analyses
(15/45) were conducted in free-living conditions, while 4
analyses combined lab and free-living validations.

Evolution of Feature Engineering and Model
Architectures
A total of 45 analyses from 40 studies used a range of ML and
DL techniques for MVPA detection.

Methodological Evolution
The shift from feature-driven ML to end-to-end DL reflects a
broader trend toward scalability and generalizability. While
traditional ML models excel in interpretability and low
computational cost, their dependence on handcrafted features
renders them brittle in free-living contexts. In contrast, DL
architectures, though data-hungry and opaque, inherently adapt
to signal variability through hierarchical abstraction, a critical
advantage for real-world deployment [31].

The progression from manual feature engineering to automated
DL underscores a paradigm shift toward scalable, context-aware
MVPA monitoring. Table 2 synthesizes this evolution,
contrasting supervised, unsupervised, and hybrid paradigms.
Supervised DL models, particularly those using transfer learning,
now dominate, with all studies adopting pretrained CNN or
bidirectional long short-term memory (BiLSTM) to mitigate
data scarcity [31,33,34,68,79]. Unsupervised approaches, such
as the self-organizing map and k-means cluster analysis, remain
nascent but offer potential for leveraging unlabeled free-living
data [83,84].
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Table 2. Task-specific performance comparison.

ReferencesPerformance metrics (number of studies)Key featuresTask type and methods/
model

Classification (n=28)

[28,36-38,50-53,64,67,72,74,80]Handcrafted features: time/frequency
features (eg, mean, SD, percentiles, lag-

RFa (n=13) • Lab (n=7): F1-score 91.9%, accura-
cy 94.0%

1 autocorrelation), ensemble of decision
trees

• Free-living (n=4): F1-score 81.0%,
accuracy 87.4%

• Lab and free-living (n=2): F1-score
88.1%, accuracy 93.8%

[19,29,58,60,62,65,73]Handcrafted features: time/frequency
features (eg, spectral entropy, signal
power), multilayer perceptron

ANNb (n=7) • Lab (n=7): F1-score 88.0%, accura-
cy 93.1%

• Free-living (n=1): F1-score 75.4%,
accuracy 82.1%

[28,50,55]Kernal-based classification on RBFd,
advanced cross-correlation metrics (xy,
xz, yz)

SVMc (n=4) • Lab (n=1): F1-score 75.4%, accura-
cy 88.4%

• Free-living (n=3): accuracy 86.5%

[58,62,64,74]Tree-based splits, integrate with ANN
outcomes

DTe (n=4) • Lab (n=3): F1-score 86.6%, accura-
cy 87.8%

• Free-living (n=1): F1-score 75.4%,
accuracy 82.1%

[37,54,64]Gradient boosting framework, handling
missing data

Gradient boosting
(n=3)

• Lab (n=2): F1-score 91.6%

[71,75,76]Temporal sequence modeling, Viterbi
smoothing

HMMf (n=3) • Lab (n=1): F1-score 99.8%
• Free-living (n=2): F1-score 73.5%,

accuracy 94.0%

[71]Quadratic decision boundaries, proba-
bilistic classification

QDAg (n=1) • Lab (n=1): F1-score 100%, accura-
cy 99.9%

[64]L1 regularization, sparse solutionsLASSOh (n=1) • Lab (n=1): F1-score 83.6%

[68]Automated feature extraction via convo-
lutional filters on raw signals

CNNi (n=1) • Free-living (n=1): F1-score 73.4%,
accuracy 96.8%

Estimation (n=10)

[56,57,59,70,77]Regression trees, bootstrapped subsets
of ActiGraph data

RF (n=6) • Lab (n=5): F1-score 83.5%, accura-
cy 86.1%

• Free-living (n=1): F1-score 80.0%,
accuracy 91.4%

[61,66]Nonlinear activation functions, raw sig-
nal processing

ANN (n=2) • Lab (n=2): F1-score 91.1%, accura-
cy 85.7%

[70]Kernal-based regression.SVM (n=1) • Lab (n=1): F1-score 90.7%, accura-
cy 88.7%

[37,70]Instance-based learning, Euclidean dis-
tance metrics

k-NNj (n=2) • Lab (n=2): F1-score 96.4%, accura-
cy 95.8%

[37]Gradient boosting framework, handling
missing data

XGBoostk (n=1) • Lab (n=1): F1-score 100%, accura-
cy 100%

[70]Iterative error correction, additive regres-
sion trees

Gradient boosting
(n=1)

• Lab (n=1): F1-score 93.2%, accura-
cy 92.1%

Deep learning (n=5)
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ReferencesPerformance metrics (number of studies)Key featuresTask type and methods/
model

[31,33,79]• Free-living (n=2): F1-score 73.6%,
accuracy 93.6%

• Lab and free-living: F1-score
53.3%, accuracy 53.7%

Bidirectional temporal modeling, raw
signal processing

Bi-LSTMl (n=3)

[33,68]• Free-living (n=2): F1-score 71.9%,
accuracy 94.4%

Automated feature extraction via convo-
lutional filters on raw signals

CNN (n=2)

[33]• Free-living (n=1): F1-score 79.8%,
accuracy 95.0%

Self-attention mechanisms for long-range
dependencies

ViTm (n=1)

[33,34]• Lab (n=1): F1-score 82.1%
• Free-living (n=1): F1-score 91.4%,

accuracy 97.7%

Hybrid architecture, integrate spatial and
temporal learning

CNN-LSTMn or

CNN-BiLSTMo

(n=2)

[33]• Free-living (n=1): F1-score 98.4%,
accuracy 99.0%

Vision Transformer + BiLSTM, gravity-
based acceleration analysis.

ViT-BiLSTMp (n=1)

aRF: random forest.
bANN: artificial neural network.
cSVM: support vector machine.
dRBF: radial basis function.
eDT: decision tree.
fHMM: hidden Markov model.
gQDA: quadratic discriminant analysis.
hLASSO: least absolute shrinkage and selection operator.
iCNN: convolutional neural network.
jk-NN: k-nearest neighbor.
kXGBoost: extreme gradient boosting.
lBiLSTM: bidirectional long short-term memory.
mViT: vision transformer.
nCNN-LSTM: convolutional neural network and bidirectional long short-term memory.
oCNN-BiLSTM: convolutional neural network and bidirectional long short-term memory.
pViT-BiLSTM: vision transformer bidirectional long short-term memory.

Traditional Machine Learning
Traditional ML techniques have dominated accelerometer-based
MVPA detection since 2006 [71], relying on handcrafted
features derived from time- and frequency-domain analyses.

Among these, RF emerged as the most prevalent algorithm
(22/40 studies, 55%) [28,36-38,50-53,56,57,59,64,67,70,72,
74-78,80], achieving mean F1-scores of 86.6% and mean
accuracy of 88.6%. RF’s ensemble structure, which aggregates
predictions from multiple decision trees (DTs) (usually
100-1000), mitigates overfitting and enhances robustness to
noise, a critical advantage in heterogeneous accelerometer
datasets [67,76]. Artificial neural network (ANN) followed
(11/40 studies, 27.5%), with mean F1-scores of 87.4% and mean
accuracy of 89.5% [19,29,31,58,60-62,65,66,70,73]. ANN used
a multi-layer perceptron with input, hidden (3-25 nodes), and

output layers, nonlinear activation functions model complex
feature interactions. Another often-used method was the SVM
(5/40 studies, 12.5%), with an F1-score of 90.2% and accuracy
of 86.5% [28,31,50,55,70]. SVM maps features to a
high-dimensional space and constructs optimal hyperplanes
using kernel functions (eg, radial basis function). The F1-scores
of models using DT (5/40 studies, 12.5%; F1-score 87.4%)
[31,58,62,64,74] underperformed k-nearest neighbor (3/40
studies, 7.5%; F1-score 96.4%) [36,37,70], extreme gradient
boosting (3/40 studies, 7.5%; F1-score 91.6%) [54,64,80], hidden
Markov model (3/40 studies, 7.5%; F1-score 100%) [71,75,76],
Gradient Boosting (1/40 studies, 2.5%; F1-score 93.2%) [70],
and quadratic discriminant analysis (1/40 studies, 2.5%; F1-score
100%) [71]. Least absolute shrinkage and selection operator
achieved the lowest F1-score (83.6%) in detecting MVPA among
all the ML models [64]. The details are illustrated in Figure 2.
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Figure 2. The extracted F1-score for moderate-to-vigorous physical activity from machine learning and deep learning models. Error bars, where
applicable, represent SD. “n” means the number of studies using the model. ANN: artificial neural network; BiLSTM: bidirectional long short-term
memory; CNN: convolutional neural network; CNN-BiLSTM: convolutional neural network and bidirectional long short-term memory; DT: decision
tree; HMM: hidden Markov model; k-NN: k-nearest neighbor; LASSO: least absolute shrinkage and selection operator; QDA: quadratic discriminant
analysis; RF: random forest; SVM: support vector machine; ViT: vision transformer; ViT-BiLSTM: vision transformer bidirectional long short-term
memory; XGBoost: extreme gradient boosting.

However, performance disparities between lab-controlled and
free-living environments underscored inherent limitations. RF
models, for instance, exhibited a decline of 8.0% in F1-score
(88.8% lab vs 80.8 free-living) and 6.6% in accuracy (90.1%
lab vs 83.5% free-living), attributed to over-reliance on static
features (eg, variance, spectral entropy) that fail to generalize
to unstructured movement patterns [27]. Similarly, ANN
experienced reduced accuracy in free-living contexts (F1-score
88.7% lab vs 75.4% free-living; accuracy 91.6% lab vs 79.4%

free-living), highlighting sensitivity to signal variability
introduced by nonexercise movements (eg, gesturing, device
placement) [27]. The rest of the algorithms had no free-living
validation.

Figures 2 and 3 stratify F1-score and accuracy by model type,
revealing that simpler algorithms like k-nearest neighbor and
quadratic discriminant analysis achieved near-perfect lab
performance (96.4%-100%) but performed less well in
free-living validations.

Figure 3. The extracted accuracy for moderate-to-vigorous physical activity from machine learning and deep learning models. Error bars, where
applicable, represent SDs. “n” means the number of studies using the model. ANN: artificial neural network; BiLSTM: bidirectional long short-term
memory; CNN: convolutional neural network; CNN-BiLSTM: convolutional neural network and bidirectional long short-term memory; DT: decision
tree; HMM: hidden Markov model; k-NN: k-nearest neighbor; NB: naive Bayes; QDA: quadratic discriminant analysis; RF: random forest; SVM:
support vector machine; ViT: vision transformer; ViT-BiLSTM: vision transformer bidirectional long short-term memory; XGBoost: extreme gradient
boosting.

Deep Learning
DL architectures revolutionized MVPA detection by automating
hierarchical feature extraction from raw accelerometer signals,
circumventing the manual feature selection bottleneck. CNN
was used in 3 studies (3/40 studies, 7.5%), achieving a mean

F1-score of 71.9% (shown in Figure 2) and a mean accuracy of
94.4% (shown in Figure 3) in free-living conditions [33,34,68].
Their layered structure, comprising convolutional filters (64,
128, 256, and 512 filters), pooling layers, and activation
functions (such as rectified linear unit), enables granular analysis
of signal dynamics.
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Recurrent architectures, notably LSTM and BiLSTM, addressed
temporal complexity in sustained MVPA bouts (eg, 10 min).
BiLSTM, which processes sequences bidirectionally, achieves
an average of F1-score 71.9% and accuracy 80.3% (shown in
Figures 2 and 3) in 3 studies (of 40 studies, 7.5%) (2 in
free-living settings, and 1 combining both lab and free-living
settings) by modeling contextual transitions (eg,
walking-to-jogging) [31,33,79]. Transformers, though less
prevalent, demonstrated promise in capturing long-range
dependencies through self-attention mechanisms. When
hybridized with vision, vision transformer (ViT), the accuracy
of detecting MVPA is 95.0% (F1-score 79.8%) in a free-living
validating setting in 1 out of 40 studies (2.5%) [33].

Hybrid models (eg, convolutional neural network and
bidirectional long short-term memory [CNN-BiLSTM], vision
transformer bidirectional long short-term memory), in 2 out of
40 studies (5%), synergized spatial and temporal learning,
achieving peak F1-score (95.5%) [34] and peak accuracy
(98.4%) in free-living settings [33].

Task-Specific Insights

Classification
Classification tasks in accelerometer-based MVPA research
involve assigning discrete intensity classes, such as sedentary,
light, moderate, or vigorous activity. Early methodologies
predominantly used traditional ML algorithms, such as RF and
SVM, which relied on handcrafted features like signal variance,
spectral entropy, and movement counts. For instance, RF
achieved robust performance in laboratory settings (F1-score
mean 91.9%, Table 3) by aggregating predictions from DTs
trained on bootstrapped subsets of ActiGraph data. However,
these models struggled with ambiguity in free-living
environments, particularly in distinguishing light-intensity
activities (eg, slow walking at 2.5 METs) from MVPA (≥3
METs). SVMs with radial basis function kernels, while effective
in lab-annotated running protocols (F1-score 75.4%) [28],
misclassified 9.0% of slow walking (or stroll) bouts as MVPA
in unstructured settings due to overlapping signal patterns [50].

Table 3. Taxonomy of machine learning and deep learning technologies for moderate-to-vigorous physical activity (MVPA) detection, categorized by
learning paradigm.

ReferencesLimitationsStrengthsAlgorithmsKey featuresLearning
paradigm

[28,29,33,36-38,50-
60,

62,64-67,69-72,74-
78,80]

RFa, ANNb,

SVMc, DTd, XG-

Booste, HMMf,

QDAg, LASSOh,

k-NNi, and gradi-
ent boosting

Require labeled data
(activity intensity la-
bels)

Supervised •• Dependency on large, la-
beled datasets

High accuracy with suffi-
cient labeled data

•• Overfitting riskInterpretable feature impor-
tance, Robust to noise and
nonlinear patterns

• Poor generalization to free-
living environments

[19,29,63]k-means, SOMj,
and autoencoders

Work with unlabeled
data, focus on clus-
tering or feature
learning

Unsupervised •• Limited direct applicability
to MVPA classification

No need for labeled data
• Identifies hidden patterns

in raw signals • Lower accuracy for intensi-
ty-specific tasks• Reduces dimensionality

• Interpretability challenges

[29,31,33,34,68,79]CNN-BiLSTMk,

ViT-BiLSTMl,

DLENm, and multi-
task learning
frameworks

Combine supervised
and unsupervised
components, inte-
grates multiple archi-
tectures

Hybrid •• High computational com-
plexity

Capture spatial and tempo-
ral dependencies

•• Require large datasetsImprove generalizability
• •State-of-the-art perfor-

mance in free-living set-
tings

Synchronization challenges
for multisensor data

aRF: random forest.
bANN: artificial neural network.
cSVM: support vector machine.
dDT: decision tree.
eXGBoost: extreme gradient boosting.
fHMM: hidden Markov model.
gQDA: quadratic discriminant analysis.
hLASSO: least absolute shrinkage and selection operator.
ik-NN: k-nearest neighbor.
jSOM: self-organizing maps.
kCNN-BiLSTM: convolutional neural network and bidirectional long short-term memory.
lViT-BiLSTM: vision transformer bidirectional long short-term memory.
mDLEN: deep learning ensemble network.
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DL architectures, particularly CNN, addressed these limitations
by automating hierarchical feature extraction directly from raw
accelerometer signals. By applying convolutional filters to
sliding windows of raw data, CNN detected local biomechanical
patterns (eg, stride frequency during running), achieving parity
with traditional hip-based cut point methods in MVPA detection
by the wrist-model [68]. Subsequent advancements, such as
Transformer architectures, further improved classification
accuracy by using self-attention mechanisms to model
long-range dependencies, outperforming CNN by 9.5% in
free-living scenarios [33].

Estimation
Estimation tasks focus on predicting energy expenditure metrics
(eg, METs) through regression-based models to map
accelerometer signals to continuous outcomes. Conventional
approaches, such as linear regression-derived cut points (eg,
Freedson equations), exhibited significant limitations due to
oversimplified assumptions about the relationship between
acceleration signals and MET values, especially for free-living
activity [65,81]. ML models, such as an additive regression tree,
lowered the standard error of estimation by 0.33-22.11 in lab
settings using ActiGraph data [69].

DL architectures, like BiLSTM, elevated estimation accuracy
by capturing temporal dependencies in accelerometer signals
(eg, MET fluctuations during exercise recovery). BiLSTM

achieved a mean absolute error of 0.757, with LSTM as the
baseline method [79].

Deep Learning
DL frameworks bridge the gap between classification and
estimation by unifying feature extraction and task-specific
learning with end-to-end frameworks. Multitask architectures,
such as AccNet24, integrate BiLSTM layers for activity intensity
with fully connected layers for MET prediction, achieving
97.7% accuracy in MVPA detection in free-living settings [31].

ViTs further optimized task performance via attention
mechanisms that dynamically prioritized critical signal regions.
For example, ViT allocated closer attention to peak acceleration
intervals during jumping, outperforming Bi-LSTM by 6.2%
(F1-score) in free-living MVPA detection [33]. However, these
advancements come with trade-offs; hybrid CNN-BiLSTM
models require much more training time than traditional RF,
limiting real-time deployment on wearables [31].

Sensor Performance

Sensor Placement
The efficacy of accelerometer-based MVPA estimation is
significantly influenced by sensor placement. Figure 4 illustrates
the averaged performance metrics (F1-scores and accuracy)
across sensor placements.

Figure 4. Mean value of F1-score and accuracy in relation to sensor placement across all validation settings. Error bars, where applicable, represent
SDs. Other placements included chest, lower back, backpack, pocket, hand, and upper arm. “wrist + hip” means the multi-sensor configuration using
both wrist and hip placements.

Regarding sensors placement, wrist-worn devices dominated
in 75% of studies (30/40 studies), followed by hip (19/40,
47.5%), thigh (6/40, 15%), chest (1/40, 2.5%), lower back (1/40,
2.5%), backpack (1/40, 2.5%), pocket (1/40, 2.5%), hand (1/40,
2.5%), upper arm (1/40, 2.5%). Multisensor configurations (eg,

wrist + hip) were applied in only 5% (2/40) of studies [28,51];
only the combination of wrist and hip was applied.

Comparative analyses on MVPA revealed that wrist-, hip-, and
thigh-worn sensors exhibited comparable mean performance
metrics across all validation settings (mean F1-scores 85.1% vs
84.3% vs 84%, accuracy mean 89.1% vs 86% vs 91.8%) as well
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as in laboratory-controlled settings (F1-score mean 88.6% vs
86.6% vs 86.5%, accuracy mean 91.7% vs 89.6% vs 97.3%).
However, disparities emerged in free-living environments. While
wrist- and hip-worn sensors demonstrated similar F1-scores
(80.3% vs 79.0%), wrist-worn devices achieved superior
accuracy (86.3% vs 70.8%). This discrepancy may stem from
the wrist’s ability to capture a broader range of upper-body
movements associated with MVPA in unstructured
environments, such as arm swings during brisk walking or lifting
activities, which are less pronounced in hip-worn sensors.

Notably, multisensor configurations (eg, wrist + hip) achieved
the highest performance (F1-score 88.3%, with 89.7% in lab
and 86.8% in free-living; accuracy 88.4%, with 88.4% in lab
but nonreports in free-living), bridging the gap between
controlled and free-living settings. However, practical
challenges, including increased participant burden due to
multiple devices and synchronization complexities between
heterogeneous sensors, limit their widespread adoption.

Sensor Type and Performance Heterogeneity
Device specifications and sensor type further influenced model
generalizability. Figure 5 shows the F1-scores in relation to
sensor type (ActiGraph and other types) and sensor placement.
While models trained on ActiGraph data achieved a higher mean
F1-score (84.9% vs 83.1%), models using consumer-grade
wearables surprisingly achieved a higher mean accuracy (91.8%
vs 87.8%). This disparity may arise from the inherent class
imbalance in free-living data, where MVPA represents a
minority of activities. Accuracy can be inflated by correctly
classifying the predominant sedentary and light activities,
whereas the F1-score provides a more balanced measure of
performance specifically for the MVPA class. The higher
F1-score associated with ActiGraph models suggests they may
be more adept at correctly identifying true MVPA bouts, which
is critical for public health monitoring.

Figure 5. Mean value of F1-score in relation to sensor type and placement across all validation settings. Error bars, where applicable, represent SDs.

Validation Practices

Ground Truth Methodologies and Their Implications
Validation of ML and DL models for MVPA detection relies
heavily on the specification of ground truth, with IC and DO
predominating. IC (21/40 studies, 52.5%), considered the gold
standard for energy expenditure measurement, provides MET
values through oxygen consumption analysis, enabling precise
alignment of accelerometer signals with intensity thresholds
(eg, ≥3 METs) [19,28,37,53-56,58,59,61,62,64,66,69,70,
72-74,77-79]. However, its laboratory-bound nature limits
ecological validity, as structured protocols often fail to replicate
free-living movement variability.

In contrast, DO (16/45 analyses, 35.6%) offers real-world
applicability by annotating activities in a naturalistic setting but

introduces subjectivity, particularly in distinguishing borderline
intensities with 2 stages. At the first stage, participant
movements were categorized into activity type (eg, sedentary,
standing utilitarian tasks, walking, and running) using recordings
[28,38,50,51,60,62,65,67,78] and time-stamped images from
wearable cameras (eg, combining the usage of a diary in
Capture-24) [31,33,53,57,75,76]. At the second stage, physical
intensity was coded using references, mainly the Compendium
of Physical Activities (sedentary, light, moderate, and vigorous)
and Children’s Activity Rating Scale (5 categories from
stationary/motionless to fast translocation).

Additionally, reliance on hip-reference cut points as proxies for
ground truth (2/45 analyses, 4.4%) perpetuates circular
validation, wherein models trained on threshold-based labels
inherit the biases of traditional regression methods [63,68]. A
total of 15.6% (7/45) of analyses used a predefined activity
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schedule in the validation process to define the ground truth
[29,36,52,58,71]. Only 11.1% (5/45) of analyses used combined
ground truth approaches (eg, IC + DO) [28,53,78], despite
evidence that combined methods improve F1-score by
8.3%-27.7% in free-living compared with IC or DO [53].

Figure 6 illustrates the distribution of ground truth methods
across studies, stratified by validation setting. Lab-based studies
disproportionately favored IC (19/26 analyses, 73%), while
free-living validations leaned on DO (10/15 analyses, 66.7%),
with lab validations outperforming free-living (F1-score mean
difference: 8.5%, accuracy mean difference: 1.4%).

Figure 6. F1-score and accuracy metrics for moderate-to-vigorous physical activity (MVPA) classification across studies, stratified by ground truth
methods and validation settings. [19]a represents the MVPA classification conducted based on the 10s and 60s window lengths, while [19]b only on
the 60s window length. [55]a represents the MVPA classification conducted among the children and adolescents with a mean age of 12.3 (SD 1.0) years,
while [55]b represents the MVPA classification conducted among adults aged 24.9 (SD 2.6) years. The mean value of F1-score and accuracy in each
group (lab, free-living, and lab and free-living) was shown underneath their names [19,28,29,31,33,34,36-38,50-80]. DO: direct observation; hip: hip
reference cut-points; IC: indirect calorimetry; NR: not reported; PRE: predefine activity schedule.

Cross-Validation Protocols and Performance Metrics
The trained models typically undergo rigorous evaluation during
the model evaluation and validation phase to verify their
generalizability and practical applicability. This process is
essential to systematically assess classification accuracy across
activity intensities and validate reliability under diverse user
scenarios. To mitigate overfitting and ensure model robustness,
k-fold cross-validation (11/45 analyses, 24.4%) was most
commonly implemented. It partitions the dataset into k equally
sized subsets, iteratively designating one subset as the validation
set and the remaining k-1 subsets for training. The process is
repeated k times to ensure all data points contribute to both
training and validation. Common configurations include 10-fold
and 5-fold cross-validation, which enhance model
generalizability by reducing sensitivity to specific training
instances. By systematically evaluating performance across
varied data partitions, this method strengthens the activity
intensity classification system’s reliability and mitigates
overfitting, a phenomenon where models memorize training
data artifacts rather than learning generalizable patterns.

Leave-one-out cross-validation, which iteratively holds out each
individual data point as a test set to evaluate model performance,
was also used in 13.3% of analyses (6/45 analyses).
Leave-one-subject-out cross-validation, an extension of
leave-one-out cross-validation designed for datasets with
multiple subjects, iteratively holds out all data from one subject
as the test set while training on the remaining participants. This
method, used in 24.4% of analyses (11/45), was critical for
assessing interindividual generalizability. Its variant,
leave-10-subject-out cross-validation, appeared less frequently
(1/45 analysis). In contrast, nested cross-validation, which
separates hyperparameter tuning from final performance
evaluation to prevent data leakage, was sparingly adopted (3/45
analyses, 6.7%) in studies.

Model efficacy was quantified using precision, recall, accuracy,
and F1-score, with metrics calculated iteratively to ensure
objective assessment. F1-score (33/45 analyses, 73.3%) and
accuracy (35/45 analyses, 77.8%) were emphasized in this
review, though their interpretation varied widely. Notably,
studies reporting accuracy exceeding 90.0% often excluded
transitional activities (eg, sit-to-stand) [19,37,65,70] or used
imbalanced datasets [28,71,80], potentially inflating scores.
Conversely, F1-scores below 75.0% typically correlated with
free-living validations, where non-MVPA movements
confounded detection [62,68,75].

In the studies not reporting the metrics of MVPA detection, but
including a confusion matrix, we calculated F1-scores and
accuracy values from the confusion matrix
[28,29,33,36,52,53,57,58,61,62,67,68,70,71,73-78]. Two studies
reported the F1-scores of moderate physical activity (MPA) and
vigorous physical activity (VPA) separately without a confusion
matrix, so they averaged MPA and VPA to get MVPA [72,79].

Four studies omitted both F1-score and accuracy [53,63,66,69].
For instance, Li et al [63] reported only the overall accuracy of
physical activity intensity classification, while Montoye et al
[66] quantified MVPA error (+1.8 min) relative to IC. Ahmadi
et al [53] only provided sensitivity (MPA: 80.0%, VPA: 90.0%)
and precision (MPA≈75.0%, VPA≈99.0%), and Nnamoko et
al [69] reported only the standard error for estimation of
personalized cut points.

Algorithmic Bias
The performance of machine and DL models for MVPA
detection is inherently tied to the physiological characteristics
of the training populations. These have been mostly young,
healthy adults. Persistent algorithmic bias induced by using this
group can undermine the generalizability of models across the
older adult and clinical cohorts.
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Figures 7 and 8 stratified MVPA detection performance
(F1-scores and accuracy) by age group (children and adolescents,
adults younger than 60 years, adults aged 60 years or older, and
clinical populations) and sensor placement (wrist, hip, thigh,
other). Among children and adolescents (11/40 studies, 27.5%),
both F1-scores (53.5%-98.9%) and accuracy (52.1%-98.7%)
varied widely [19,28,29,38,50-52,55,62,63,79]. Adults under
60 years (20/40 studies, 50%) exhibited consistently high
performance (F1-score mean 85.8%, accuracy mean 91.7%)

[31,33,34,53,55-59,61,65-68,70,71,73-76], while older adults
(60 years or older) in 15% of studies (6 out of 40 studies)
showed relatively reduced score (F1-score mean 72.3%, accuracy
mean 89.9%) [54,64,69,72,77,78]. Clinical populations (2/40
studies, 5%), on the other hand, achieved near-perfect scores
(F1-score 97.6%-100%, accuracy 87.9%-100%), though limited
studies (n=2, one in mild cystic fibrosis, and one in type 1
diabetes) necessitate cautious interpretation [37,80].

Figure 7. F1-scores for moderate-to-vigorous physical activity detection across age groups and sensor placements. Brackets (“[]”) represent the reference
numbers; asterisks (“*”) indicate lab-validated results [19,28,29,33,34,36,37,51-54,56-59,61,62,64,65,67,68,70-80]. CF: cystic fibrosis; T1D: type 1
diabetes.

Figure 8. Accuracy metrics for moderate-to-vigorous physical activity detection across age groups and sensor placements. Brackets (“[]”) represent
the reference numbers; asterisks (“*”) indicate lab-validated results [19,28,29,31,33,36-38,50,52,53,55-62,65,67,68,70,71,73-78,80]. CF: cystic fibrosis;
T1D: type 1 diabetes.

Reproducibility and Transparency Gaps
Notwithstanding the performance advancement reported, 57.5%
of the studies (23/40 studies) failed to disclose code or datasets,
and 60% (3/5 studies) of DL studies lacked hyperparameter
specifications (eg, learning rates, batch sizes) [34,68,79]. This
“black box” methodological opacity mirrors the reproducibility
crisis in traditional cut point research, where proprietary
algorithms replace opaque thresholds, compromising
interpretability. Only 20.0% of studies (8/40) adhered to open
science practices by publicly sharing the code of models
[38,51,52,58,67,68,72,76], with one study providing only sample
code availability [67].

The absence of standardized reporting frameworks exacerbates
methodological inconsistencies. For example, window lengths
for signal segmentation ranged from 1s to 60s, complicating
cross-study comparisons (details shown in Table 1). While 5
studies evaluated multiple window lengths [19,29,33,51,56],
optimal performance diverged across populations: 15s or 16s
were preferred for adults [33,56] and preschoolers [51], whereas
60s windows were superior to 10s and 30s among preschoolers
[29]. Notably, Trost et al [19] found no difference between 10s
and 60s among children (mean 11, SD 2.7 years). Similarly,
MET thresholds for MVPA classification varied, such as 2.8
METs [38], 3 METs [34,37,59,60,65-67,70,71,74,76,77,79],
and 3.9 METs [19,29]. This variability introduces heterogeneity
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in intensity categorization, undermining cross-study
generalizability.

On the positive side, the proliferation of public datasets
(accounting to 25%, 10/40 studies), including Capture-24
[31,33,53,57,75,76], Energy-24 [57], UOULU (University of
Oulu) [60], OSU (Oregon State University) [60], the PAMAP2
Physical Activity Monitoring dataset (University of California,
Irvine, UCI) [60], and the Daily and Sports Activities (the UCI
Machine Learning Repository) [60] has partially mitigated by
enabling benchmarking and reducing data dependency.

Discussion

Principal Findings
This systematic scoping review synthesizes advancements in
ML and DL techniques for estimating and predicting MVPA
from accelerometer data. Traditional ML models (eg, RF, ANN)
demonstrated robust lab-based accuracy (F1-score mean
83.6%-100%) while real-world performance declined by
8.0%-13.3% due to environmental noise and device
heterogeneity. DL architectures (eg, CNN, Transformer)
achieved superior performance by leveraging raw signal
dynamics (F1-score mean 73.6%-98.4%) in free-living settings,
especially with hybrid models (CNN-BILSTM, ViT-LSTM).
Wrist-worn devices were most often tested (30/40, 75.0% of
studies) and performed comparably to hip/thigh placements in
a lab setting (F1-score mean 84.0%-84.3%, accuracy mean
86.0%-91.8%). Multiaccelerometer configurations (eg, hip +
wrist) achieved the best performance (accuracy mean 88.4%)
but face practical limitations. Algorithmic bias was seen to
disfavor older adult participants, but not clinical populations.
However, only a few studies have tested patients, limited to
cystic fibrosis and type 1 diabetes.

Methodological Advancements and Challenges

From Feature Engineering to End-to-End Learning
The evolution of MVPA detection methodologies reveals a clear
paradigm shift from manual feature engineering to automated
DL. Historically, ML models relied on handcrafted features (eg,
spectral entropy, variance) derived from time-and
frequency-domain analyses. In contrast, DL architectures, such
as CNN and Transformers, automate hierarchical feature
extraction from raw accelerometer signals, capturing
biomechanical nuances (eg, stride variability during running)
through convolutional filters and attention mechanisms [33,68].
For instance, hybrid models like CNN-BiLSTM synergized
spatial and temporal learning, achieving state-of-the-art accuracy
(F1-score 98.4%-99.6%, accuracy 97.7%-99.0%) in free-living
settings [33]. The effectiveness of this architecture is further
corroborated by its successful application in related
biomechanical modeling tasks, such as predicting ligament
fatigue failure risk from complex signal data, highlighting its
robust capability to capture critical spatiotemporal patterns [85].
Nevertheless, DL’s computational intensity and reliance on
high-resolution data (≥100Hz) limited deployment on
resource-constrained wearables [33]. Furthermore, while DL
reduced manual feature engineering burden, nearly 60.0% of

models remained inaccessible due to unshared code,
perpetuating reproducibility challenges (section “Reproducibility
and Transparency Gaps”).

Three key advancements define this evolution: (1) Static to
dynamic features, unlike the fixed features of traditional ML,
DL architectures dynamically extract nuanced biomechanical
patterns from raw signals (section “Traditional Machine
Learning” and “Deep Learning”) [31,33,34,68,79]. (2) Early
studies treated classification and estimation as separate tasks,
but modern frameworks like AccNet24 unify these through
shared neural pathways, improving efficiency (section
“Task-Specific Insights”) [33]. (3) Self-supervised learning,
pretraining on unlabeled data, reduced annotation costs while
maintaining high performance, addressing scarcity of free-living
settings (section “Methodological Evolution and Comparative
Insights”) [33,68].

Lab-to-Real-World Performance Comparison
Although lab-validated models achieved high performance (eg,
87.9%-100% accuracy across ML techniques, section “Evolution
of Feature Engineering and Model Architectures”), free-living
performance experienced unstructured movement patterns and
environment noise. For example, RF accuracy dropped from
90.1% (lab) to 83.5% (free-living), while wrist-based models
exhibited superior adaptability to upper-body movements (eg,
arm swings) in unstructured settings (section “Sensor
Placement”). Notably, only 42.2% of studies validated models
in real-world environments (most after 2020), highlighting a
critical translational gap.

Two key insights emerge from a lab-to-real-world comparison.
(1) There is a 3.1%-16.2% accuracy decline when using ML
techniques (section “Evolution of Feature Engineering and
Model Architectures”). Context-aware architecture, DL
architectures, such as transformers, partially mitigated
performance declines by leveraging context-aware attention to
movement sequences (eg, detecting walking interruptions),
achieving accuracy of 95.0% in free-living scenarios [33]. (2)
There is an algorithmic bias across age groups that hinders
real-world deployment (section “Algorithmic Bias”).

Validation and Reproducibility
A key challenge lies in inconsistent validation protocols. While
IC provided precise MET-based thresholds, its lab-bound nature
limited ecological validity [58]. Conversely, DO offered
real-world applicability but introduced subjectivity in intensity
classification [86,87]. Moreover, disparities in metrics reporting
(eg, exclusion of transitional activities) [19,37,65,70] and
variable parameters (eg, MET threshold: 2.8-3.9, window
lengths 1-60s) hindered cross-study comparability (section
“Reproducibility and Transparency Gaps”). Compounding these
issues, 42.5% of studies adhered to open science practices,
perpetuating a “new cut-point conundrum” akin to proprietary
regression thresholds.

Our synthesis reveals a vicious cycle underpinning the
translational challenges in AI-driven MVPA monitoring. The
foundational issue is the lack of standardized validation
protocols. Inconsistent MET thresholds and variable data
window lengths mean that models are trained and evaluated on
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fundamentally different definitions of MVPA. This directly
contributes to the lab-to-real-world performance gap, as a model
calibrated with one protocol fails to generalize to data collected
under another. Furthermore, this inconsistency, when combined
with the prevalent lack of code sharing, makes it impossible to
audit, replicate, or fairly compare models. Consequently, this
opacity hinders the identification and correction of algorithmic
bias against underrepresented populations, as the root cause of
poor performance, a flawed model versus an incompatible
validation method, cannot be discerned. Thus, these challenges
are not isolated but are synergistic barriers that collectively
impede the development of truly generalizable and equitable
models.

Sensor Performance and Device Bias
Device placement and type emerged as critical determinants of
model performance, as evidenced in the section “Sensor
Performance.” For instance, while ActiGraph-trained models
achieved high lab accuracy (F1-score 79.9%, accuracy 90.5%),
they underperformed on consumer wearables (eg, Samsung
smartwatch, F1-score mean difference 3.2%) due to differences
in sensor calibration and sampling rates (Table 1 and Figure 5)
[56]. Additionally, interdevice variability across brands (eg,
Axivity vs GENEActiv) exacerbated performance
inconsistencies, particularly in free-living settings. Notably,
optimal sensor placement (eg, wrist vs hip) influenced
adaptability to movement patterns, with wrist-worn devices
showing superior capture of upper-body dynamics (eg, arm
swings) but struggling with lower-body activities [40,88]. These
findings highlight the need for device-agnostic training pipelines
to mitigate performance variability across brands and
placements.

Translational Opportunities and Challenges

Public Health and Clinical Integration
Wrist-worn devices demonstrated comparable accuracy to
hip/thigh placements in lab settings (F1-score 84.0%-84.3%,
accuracy 86.0%-91.8%) and superior adaptability to free-living
upper-body movements (Figure 4), supporting their feasibility
for scalable monitoring. However, ActiGraph’s dominance
(n=30, 75.0% of studies) and limited validation on consumer
wearables (eg, smartwatches) hinder real-world applicability.
Clinically, models achieved high accuracy in controlled settings
for cystic fibrosis and type 1 diabetes, but small sample sizes
and structured protocols limit ecological validity [37,80].
Expanding validation studies to more diverse clinical
populations (eg, mobility impairments) is critical.

Age and Population Disparities
Results revealed systemic biases across the age range (section
“Algorithmic Bias”). For instance, models trained on adults
misclassified MVPA in children (F1-score mean difference:
–5.7%) due to developmental differences in stride length and
metabolic variability [19]. Studies involving preschoolers
reported accuracy fluctuations between 53.7% and 88.4%,
reflecting challenges in modeling erratic movement patterns
typical of young children [28,29,38,50,52,63,79]. Conversely,
older adults (60 years or older) exhibited reduced accuracy

(F1-score mean 77.9%) due to slower gait speeds, postural
instability, and comorbidities that alter movement signatures
[54,64,69,72,77,78]. Wrist-based model, for example,
underestimated MVPA in this cohort by 6.0%-16.6% compared
with thigh-worn sensors, highlighting the need for age-specific
calibration [78].

Emerging Innovations
Hybrid DL models have emerged as a powerful approach. For
instance, integrating LSTM with CNN (CNN-LSTM) or ViTs
(vision transformer bidirectional long short-term memory)
enables the capture of spatial-temporal patterns in accelerometry
data [33,34]. Building on this, BiLSTM layers further enhance
temporal dependency modeling by analyzing sequences in both
forward and backward directions [31].

In parallel, image-based feature extraction methods, such as
converting raw accelerometer signals into Gramian angular field
images, have improved feature learning by transforming
time-series data into visual representations [33]. Additionally,
multisensor fusion strategies—combining data from hip, wrist,
and thigh placements—address variability in sensor positioning,
boosting model robustness [28,34]. Furthermore, transfer
learning leverages pretrained architectures like ResNet101,
adapting them for accelerometer classification tasks [31].

Another key innovation lies in advanced feature engineering.
Autonomous feature extraction via CNN reduces reliance on
handcrafted features [68], while time-frequency domain fusion
(eg, spectral power) enhances activity discrimination [52].
Notably, real-time and edge computing advancements explore
lightweight models through pruning and quantization, enabling
deployment on wearable devices [33].

However, significant challenges remain. First, models trained
in controlled lab settings often generalize poorly to free-living
environments due to uncontrolled variability [52]. Moreover,
short and heterogeneous activity bouts, common in populations
like preschoolers, result in mixed-activity windows that
complicate classification [29]. Another critical challenge is
sensor placement variability, as signal patterns differ across
body positions [37]. Compounding this, class imbalance from
overrepresented sedentary/light activities skews model
performance [75]. Additionally, computational complexity limits
real-time use, as seen in resource-heavy models like AccNet24
[31]. Finally, distinguishing biomechanically similar activities
(eg, climbing vs walking) remains problematic [29].

Future Directions
To address existing gaps, 4 interconnected priorities emerge.
First, resolving inconsistencies in ground truth methods, such
as variable MET thresholds (2.8-3.9 METs) and window lengths
(1-60s), is critical. This requires standardized validation
frameworks, including consensus guidelines and open datasets
(eg, Capture-24), to harmonize protocols and reduce
discrepancies in intensity classification [64].

Second, prioritizing free-living validation is essential to bridge
the lab-to-real-world performance gap. For instance, RF models
exhibit accuracy declines from 90.1% in lab settings to 83.5%
in free-living environments. Concurrently, diversifying training
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data to include underrepresented groups, such as the older adult,
pediatric, and clinical populations, will improve generalizability
and mitigate age-related biases [62,72].

Third, advancing algorithmic fairness through regulatory
frameworks and bias audits is imperative. This includes
expanding datasets to encompass more and diverse clinical
cohorts while addressing disparities in model performance across
the age range. Additionally, mandating open science practices,
such as code/data sharing and hyperparameter transparency,
will enhance reproducibility and resolve the “new cut-point
conundrum” plaguing activity intensity thresholds.

Finally, optimizing DL architectures, such as quantized models
or hybrid CNN-BiLSTM frameworks, for low-power wearables
will enable real-world deployment while maintaining
computational efficiency [31,33].

Looking ahead, these priorities align with broader calls for
standardization and interpretability. For example, improving
the “black-box” nature of DL models [68] and harmonizing
evaluation metrics will foster clinical trust. Moreover,
lightweight, edge-compatible architectures and multimodal data
integration represent promising pathways to overcome current
limitations in real-world MVPA monitoring.

Limitations and Methodological Considerations
The strengths of this review include the rigorous adherence to
PRISMA-ScR guidelines, a comprehensive search strategy
across 3 electronic databases (PubMed, IEEE Xplore, Web of
Science, and others via manual citation tracking), and systematic
screening of 1938 records. The methodology prioritized
transparency through dual-reviewer full-text screening to resolve
discrepancies and consultation to ensure methodological rigor.
By focusing on peer-reviewed studies, we aimed to synthesize
evidence grounded in empirical validation, thereby minimizing
inclusion of speculative or opinion-based articles.

However, several limitations warrant consideration. First, the
exclusion of gray literature (eg, unpublished trials, industry
reports, or conference proceedings) may have omitted insights
from ongoing or unsuccessful implementation efforts,
particularly those led by technology developers or health care
providers. This introduces potential publication bias, as negative
results or pragmatic challenges in real-world deployment are
often underrepresented in peer-reviewed journals. Second, our
decision to exclude non–peer-reviewed studies and prioritize

articles reporting empirical implementation in clinical or
free-living settings risks overlooking formative research, such
as feasibility studies or pilot trials, which could offer valuable
lessons for scalable AI integration.

A further limitation arises from our emphasis on the highest
reported performance metrics (eg, F1-scores, accuracy) across
studies. While this approach highlights peak algorithmic
capabilities, it may overestimate real-world applicability, as
optimal configurations (eg, 15-second windows for adults,
multisensor placements) often lack generalizability to diverse
populations or unstructured environments. For instance, models
achieving 99.0% accuracy in lab settings may exhibit significant
performance degradation in free-living contexts due to
uncontrolled variables like device heterogeneity or nonexercise
movements.

Methodologically, while the Arksey and O’Malley framework
does not mandate quality appraisal, the inclusion of studies with
heterogeneous validation protocols (eg, variable MET
thresholds, ground-truth methodologies) complicates cross-study
comparisons. Future reviews could strengthen synthesis by
incorporating quality assessment tools to evaluate bias risk and
methodological consistency. Last, the predominance of studies
using young, healthy cohorts limits insights into algorithmic
fairness and generalizability for older adult or clinical
populations, underscoring the need for more inclusive training
datasets.

These considerations do not diminish the review’s contributions
but highlight critical gaps, such as reproducibility challenges
and translational biases, that must be addressed to advance
equitable, real-world deployment of AI-driven MVPA
monitoring tools.

Conclusions
This systematic scoping review highlights that ML and DL have
significantly advanced in the detection of MVPA by using
accelerometer data, yet persistent gaps in generalizability and
transparency hinder real-world impact. To bridge the
lab-to-real-world divide, collaborative efforts across public
health and computer science must prioritize reproducibility,
inclusive design, and robust validation. By addressing these
challenges, AI-driven tools can fulfill their potential as scalable,
equitable solutions for advancing global physical activity
research and intervention.
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