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Abstract

Background: Infectious diseases represent a major challenge for health systems worldwide. With the recent global pandemic
of COVID-19, the need to research strategies to treat these health problems has become even more pressing. Although the literature
on big data and data science in health has grown rapidly, few studies have synthesized these individual studies, and none has
identified the utility of big data in infectious disease surveillance and modeling.

Objective: The aim of this study was to synthesize research and identify hotspots of big data in infectious disease epidemiology.

Methods: Bibliometric data from 3054 documents that satisfied the inclusion criteria retrieved from the Web of Science database
over 22 years (2000-2022) were analyzed and reviewed. The search retrieval occurred on October 17, 2022. Bibliometric analysis
was performed to illustrate the relationships between research constituents, topics, and key terms in the retrieved documents.

Results: The bibliometric analysis revealed internet searches and social media as the most utilized big data sources for infectious
disease surveillance or modeling. The analysis also placed US and Chinese institutions as leaders in this research area. Disease
monitoring and surveillance, utility of electronic health (or medical) records, methodology framework for infodemiology tools,
and machine/deep learning were identified as the core research themes.

Conclusions: Proposals for future studies are made based on these findings. This study will provide health care informatics
scholars with a comprehensive understanding of big data research in infectious disease epidemiology.

(Interact J Med Res 2023;12:e42292) doi: 10.2196/42292
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Introduction

Globally, the infectious disease burden continues to be
substantial in countries with low and lower-middle income,
while morbidity and mortality related to neglected tropical
diseases and HIV infection, tuberculosis, and malaria remain
high. Tuberculosis and malaria are endemic to many areas,

imposing substantial but steady burdens. At the same time, other
infections such as influenza fluctuate in pervasiveness and
intensity, disrupting the developing and developed settings alike
when an outbreak and epidemic occurs. Additionally, deaths
have persisted over the 21st century due to emerging and
reemerging infectious diseases compared with seasonal and
endemic infections. This portrays a new era of infectious disease,
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defined by outbreaks of emerging, reemerging, and endemic
pathogens that spread quickly with the help of global mobility
and climate change [1].

Moreover, the risk from infectious diseases is globally shared.
While infectious diseases thrive in underresourced settings,
inequalities and inequities in accessing health and health care
create a favorable environment for infectious diseases to spread
[2,3]. Addressing inequalities and inequities in accessing health
care, and improving surveillance and monitoring of infectious
diseases should be prioritized to minimize the emergence and
spread of infections.

Recent years have witnessed the rapid emergence of big data
and data science research, propelled by the increasing
availability of digital traces [4]. The growing availability of
electronic records and passive data generated by social media,
the internet, and other digital sources can be mined for pattern
discoveries and knowledge extraction. Like most buzz words,
big data has no straightforward meaning and its definition is
evolving. Broadly, big data refers to a large volume of structured
or unstructured data, with largeness itself associated with three
major terms known as the “3 Vs”: volume (large quantity),
velocity (coming in at unprecedented real-time speeds), and
variety (increasing collection from different data sources).
Additional characteristics of big data include veracity, validity,
volatility, and value [5]. For epidemiology and infectious
diseases research, this means that in the last decade, there has
been a significant spike in the number of studies with
considerable interest in using digital epidemiology and big data
tools to enhance health systems in terms of disease surveillance,
modeling, and evidence-based responses [4,6-8]. Digital
epidemiology uses digital data or online sources to gain insight
into disease dynamics and health equity, and to inform public
health programs and policies [9,10].

The success of infectious disease control relies heavily on
surveillance systems tracking diseases, pathogens, and clinical
outcomes [11]. However, conventional surveillance systems
are known to frequently have severe time lags and limited spatial
resolution; therefore, surveillance systems that are robust, local,
and timely are critically needed. It is crucial to monitor and
forecast emerging and reemerging infections [12] such as severe
acute respiratory syndrome, pandemic influenza, Ebola, Zika,
and drug-resistant pathogens, especially in resource-limited
settings such as low-middle–income countries. Using big data
to strengthen surveillance systems is critical for future pandemic
preparedness. This approach provides big data streams that can
be triangulated with spatial and temporal data. These big data
streams include digital data sources such as mobile health apps,
electronic health (or medical) records, social media, internet
searches, mobile phone network data, and GPS mobile data.
Many studies have demonstrated the usefulness of real-time
data in health assessments [13-18]. Some of these studies have
been used explicitly for the monitoring and forecasting of
epidemics such as COVID-19 [19], Zika [13], Ebola [16], and
influenza [14].

The body of extant literature at the nexus of big data,
epidemiology, and infectious diseases is rapidly growing.
However, despite its growth and dispersion, there has been a

limited synthesis of the applications. A previous study [20]
performed a bibliometric analysis focusing on only HIV. A
bibliometric analysis is a statistical or quantitative analysis of
large-scale bibliographic metadata (or metrics of published
studies) on a given topic. These quantitative analyses detect
patterns, networks, and trends among the bibliographic metadata
[21,22]. Thus, the aim of this study was to address the evolution
of big data in epidemiology and infectious diseases to identify
gaps and opportunities for further research. The study findings
reveal interesting patterns and can inform trending research
focus and future directions in big data–driven infectious diseases
research.

Methods

Study Design
A bibliometric analysis was performed to understand and
explore research on big data in infectious disease modeling and
surveillance. The adopted bibliometric methodology involved
three main phases: data collection, data analysis, and data
visualization and reporting [23].

Search Strategy
Regarding data collection, which entails querying and exporting
data from selected databases, we queried the Web of Science
(WoS) core databases for publications using specific inclusion
and exclusion criteria. Compared to other databases, the WoS
has been shown to have better quality bibliometric information
[23,24] and more excellent coverage of high-impact journals
[25]. With the aid of domain knowledge experts from the fields
of both big data and epidemiology, we iteratively developed a
search strategy and selected the following search terms. The
following search string queried all documents’ titles, abstracts,
and keywords, and generated 3235 publications in the WoS
collection:

(Epidemic* OR “infectious disease*” OR “Disease
surveillance” OR “disease transmission” OR
“disease outbreak*” OR (“communicable disease*”
NOT “non-communicable disease”) OR syndemic*
OR HIV OR AIDS OR “human immunodeficiency
virus” OR coronavirus* OR SARS-CoV-2 OR
COVID-19 OR Influenza OR flu OR Zika OR Ebola
OR MERS OR “Middle East respiratory syndrome”
OR Tuberculosis OR “Monkey Pox” OR “Dengue
virus” OR Hepatitis*)

AND

(“BIG DATA” OR “web mining” OR “opinion
mining” OR “Google Trend*” OR “Google search*”
OR “Google quer*” OR “Internet search*” OR
“Internet quer*” OR “search engine quer*” OR
“Digital traces” OR “electronic health records” OR
“Digital epidemiology”)

Screening Strategy
Documents not written in English and not peer-reviewed,
including editorial materials, letters, meeting abstracts, news
items, book reviews, and retracted publications, were removed
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from the data set given the focus on bibliometric analysis, leaving 3054 documents for the analytic sample (Figure 1).

Figure 1. Flow chart of the literature selection process.

Analysis
The 3054 bibliographic data were exported into the R package
bibliometrix [23] for analysis. This package was specifically
used to conduct performance analysis and science mapping of
big data in infectious disease epidemiology. Performance
mapping evaluates the production and impact of research
constituents, including authors, institutions, countries, and
journals. Science mapping examines the relationships between
the research constituents by analyzing the topic’s conceptual,
intellectual, and social structure.

There are several metrics available for bibliometric analysis. In
this study, the primary metrics used for evaluating productivity
and influence were the H-index and M-index. The H-index
represents the number of published papers h, such that the
citation number is at least h [26]. The H-index can be computed
for different bibliometric units of analysis: authors, journals,
institutions, and countries. The M-index simply adjusts the
H-index for the academic age (ie, the number of years since the
researcher’s first publication). Other utilized performance
analysis metrics were obtained from yearly research output and
citation counts. These metrics also contribute to identifying the
main themes and the key actors in the research area.

In terms of science mapping, network maps were constructed
for some selected bibliographic units of analysis [27]. These
networks exhibit frequency distributions of the involved
bibliographic data over time. For instance, international
collaborations can be explored by assessing same-country
publications. A cocitation network analysis was also used to
analyze publication references. In addition, using the Louvain
clustering algorithm and a greedy optimization technique [28],

a co-occurrence analysis was used to understand the conceptual
structure of the research area. The basic purpose of
co-occurrence analysis is to investigate the link between
keywords based on the number of times they appear together
in a publication. Notable research topics and over-time trends
were detected by generating clusters for author-provided
keywords [29]. VOSviewer [30] was used to construct the
network visualizations. Each network node represents a research
constituent (eg, author, country, institution, article, document
source, keyword). The node’s size is proportional to the
occurrence frequency of the relevant parameters. The degree
of association is represented by the thickness of the link between
nodes, and the various colors reflect distinct clusters.

Results

Descriptive Summary
The bibliographic data set comprises 3054 documents from
1600 sources, 14,351 authors, and 121,726 references. From
the 3054 documents, 2666 (87.30%) were original research
articles and the remaining 388 (12.70%) were review papers.
The research output before 2009 was relatively low. The annual
publication output during the 27 years (1995-2022) grew
steadily, with a yearly growth rate of 26.5%. The publication
growth increased steeply between 2013 and 2020 (Figure 2).
Table 1 presents the summary statistics of the primary
characteristics of these 3054 publications, including the time
span and information about documents and authors.

As shown in Table 2, the most productive and influential sources
publishing on topics related to big data and infectious diseases
epidemiology were Journal of Medical Internet Research and
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PLoS One (H-index=18), followed by IEEE Access
(H-index=13). In terms of productivity, Journal of Medical
Internet Research produced a slightly higher number of
publications (n=61) than the next best journal PLoS One (n=56).
PLoS One had the highest number of total citations at 1893.

As shown in Table 3, the most productive and influential author
was Zhang Y (H-index=17), followed by Li X (H-index=13)
and Wang J (H-index=12). Wang L had the highest total
citations (n=1072), which was substantially higher than the next
most impactful author Wang J (total citations=861).

Figure 2. Annual growth of publications related to big data in infectious diseases research.

Table 1. Main descriptive summary of the extracted bibliographic records from 1995 to 2022.

ResultsDescription

1995-2022Time span (years)

1600Sources, n

3054Documents, n

26.52Annual growth rate, %

2.86Document average age (years)

18.52Average citations per document, n

121,726References, n

Authors, n

14,351Total

225Single-authored documents

Author collaborations

236Single-authored documents, n

5.55Coauthors per document, n

28.04International coauthorships, %
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Table 2. Top 10 productive and influential publication sources ranked by H-index.

Publication yearPublications, nTotal citations, nM-indexH-indexAim and scopeJournal

20076117051.1318Digital health, data science, health informatics,
and emerging technologies for health, medicine,
and biomedical research

Journal of Medical
Internet Research

20105618931.3918MultidisciplinaryPLoS One

2015329831.6313Multidisciplinary, comprising all IEEE fields of
interest, emphasizing applications-oriented and
interdisciplinary articles

IEEE Access

2015233891.6313Publishes from all areas of the natural sciences,
psychology, medicine, and engineering

Scientific Reports

2009335690.8612Biomedical and health informatics, including
clinical care, clinical research, translational sci-
ence, implementation science, imaging, educa-
tion, consumer health, public health, and policy

Journal of the Amer-
ican Medical Infor-
matics Association

2013323101.1011Medical journal considering papers in clinical
medicine, public health, and epidemiology

BMJ Open

2018237242.2011Multidisciplinary journal with a unique focus
on the intersection of innovation and technology
in public health

JMIR Public Health
& Surveillance

2006164500.6511Medical informatics, including information sys-
tems and computer-aided medical support deci-
sion systems

International Journal
of Medical Informat-
ics

2012175300.9110Original clinical and laboratory-based research,
together with reports of clinical trials, reviews,
and some case reports dealing with the epidemi-
ology, clinical diagnosis, treatment, and control
of infectious diseases

International Journal
of Infectious Dis-
eases

2012152080.9110Relating to the design, development, implemen-
tation, and evaluation of health information
technologies and decision-making for human
health

BMC Medical Infor-
matics & Decision
Making

Table 3. Top 10 productive and influential authors ranked by H-index and total citations.

Publication yearPublications, nTotal citations, nM-indexH-indexAuthor

—35776—a17Zhang Y

—35544—13Li X

2014248611.3312Wang J

—221072—12Wang L

2015213421.2510Wang Y

2017143661.6710Li Z

2010117480.7710Brownstein JS

2014184271.009Wang Z

2015125561.139Zhang W

2016123711.299Zhang X

aNot available.

The aim and scope of the top 10 most influential journals, as
listed in Table 2, is to publish medical research, medical
informatics, or multidisciplinary studies. It can thus be inferred
that major future breakthroughs regarding big data in infectious
diseases epidemiology will likely appear in these journals.

Figure 3 displays the top 20 most productive institutions.
Institutional contributions were assessed by affiliations with at
least one author in the publication. Except for the University of
California, the top three institutions, which account for 21.3%
of the number of publications in the top 20, were medical
schools: Harvard Medical School (7.9%) and Icahn School of
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Medicine at Mount Sinai (6.4%). The other institutions, each
accounting for more than 6% of the total, included Columbia
University and Oxford University in the top 5, whereas others
in the top 20 are research universities: London School of
Hygiene and Tropical Medicine focuses on global and public
health, Taipei Medical University is medical-based, and
Huazhong University of Science and Technology is focused on
science and technology. The United States produced the majority
of the top 10 most productive institutions, which were in the
top 5.

The 20 most productive countries (Figure 4) are led by the
United States and China, accounting for more than half (57.3%)

of the total publication output. The United States alone
accounted for 41.1% of the productivity in this field. The other
countries in the top five were the United Kingdom (9.4%), India
(4.4%), and Canada (3.3%).

Computer science was the most productive research domain in
the bibliographic collection (Figure 5), accounting for 17.6%
of the top 10 subject areas. In order of productivity, the other
research subjects in the top 5 were public environmental and
occupational health (11.4%), health care services (9.6%),
medical informatics (9.0%), and engineering (8.8%).

Figure 3. Top 20 institutions by number of publications. CALIF: California; HARVARD MED SCH: Harvard Medical School; ICAHN SCH MED
MT SINAI: Icahn School of Medicine at Mount Sinai; LONDON SCH HYG AND TROP MED: London School of Hygiene & Tropical Medicine;
PENN: Pennsylvania; UNIV: University.

Figure 4. Top 20 productive countries by number of publications.
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Figure 5. Top 10 key subject areas by number of publications.

Two major clusters of countries represent the collaboration
patterns of the most productive countries (Figure 6). The
network was set to include only countries with at least 10
documents, resulting in 50 productive countries. The clustering
results demonstrated a demarcation of European countries from
the others. For instance, cluster 1 (red) represented most
countries from Europe, with England, Germany, and Spain
being the core countries. Non-European countries constituted
the second cluster (green). The United States and China were
the core countries of this group.

Regarding collaboration strength, the United States, with a total
link strength of 570, featured the highest number of partners
(48), accounting for almost all 50 countries in the network
(96%). China, which distantly followed the United States,
featured 38 partners and a total link strength of 304. This implies
that collaboration is mainly regional.

Figure 7 shows a network map of cocited references in this
research area, wherein the node’s size represents the citation
strength of the individual studies. The network was set to include
only studies with at least 25 citations, resulting in 37 studies.
Ginsberg et al [31] published the most highly cited article (185
citations). This 13-year-old study presented a method that used
Google search queries to track flu-like illnesses in a population.

The second most cited study by Eysenbach [9] introduced the
concept of infodemiology, the science of using the internet (eg,
social media, search engines, blogs, and websites) to inform
public health and public policy. Table 4 further summarizes the
top 15 most cited references, including the title, year of
publication, number of citations, type of disease, and data
source.

The 37 studies in the network map of cocited references
produced four thematic clusters (Figure 7); disease monitoring
and surveillance (cluster 1), utility of electronic health (or
medical) records (cluster 2), methodology framework for
infodemiology tools (cluster 3), and machine learning and deep
learning methods (cluster 4) were the main topics discussed.

Keyword co-occurrence analysis serves as a supplement to
enrich the understanding of the thematic clusters derived from
the reference cocitation analysis and helps identify the core
topics and contents [29]. As shown in Figure 8, the
co-occurrence network displayed 100 relevant keywords after
assigning a selection threshold of 10 for the number of keyword
occurrences. The top 5 most frequently used keywords were
COVID-19, big data, machine learning, coronavirus, and
electronic health records.
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Figure 6. Network of country collaborations (≥10 documents, 50 countries, 2 clusters).

Figure 7. Network of cocited references.
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Table 4. Summary of the top 15 most cited references.

Data sourceDiseaseCitations, nReference

Google TrendsInfluenza185Ginsberg et al [31]

NAaInfluenza74Eysenbach [9]

Google TrendsNA69Nuti et al [32]

Google FluInfluenza67Lazer et al [33]

Google TrendsNA54Carneiro and Mylonaki [34]

Electronic health recordsCOVID-1949Zhou et al [35]

Twitter feeds and DXYbCOVID-1949Dong et al [36]

Yahoo searchesInfluenza48Polgreen et al [37]

Google TrendsNA43Mavragani and Ochoa [38]

Electronic medical recordsCOVID-1942Huang et al [39]

Google TrendsInfluenza41Eysenbach [40]

Electronic medical recordsCOVID-1934Wu et al [41]

Internet searchesc and Weibo indexdCOVID-1933Li et al [42]

Twitter and Google TrendsInfluenza31Santillana et al [43]

TwitterInfluenza30Signorini et al [44]

aNA: not applicable (eg, a review paper, no particular disease or data source for a case study).
bOnline platform of real-time COVID-19 cases in China.
cInternet searches include Google Trends and Baidu Index.
dWeibo is a China-based social media platform.

Figure 8. Co-occurrence networks of author keywords.
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The 100 author-derived keywords produced four clusters from
the coword analysis (Figure 8). Cluster 1 (yellow-green) is
related to public health and infectious diseases, with top
keywords such as COVID-19, SARS-CoV-2, epidemiology, and
epidemics. Cluster 2 (green) is related to electronic storage and
delivery of health care, with top keywords including electronic
health records, clinical decision support, primary care,
epidemiology, and telemedicine. Cluster 3 (blue) involves
infodemiology tools, with top keywords including coronavirus,
google trends, social media, infodemiology, and surveillance.
Cluster 4 (red) is more coherent and broadly related to big data
and artificial intelligence, including top keywords big data,
machine learning, artificial intelligence, deep learning, and big
data analytics.

Systematic Review of the Top 20 Papers
Further filtering of the top 20 papers was performed to determine
if they met the following criteria: (1) addressed at least one
infectious disease and (2) utilized a big data source. A review
of these 20 papers (summarized in Table 5) was then performed.
These selected studies were mainly characterized by papers that
utilized novel data sources, including internet search engine
data (Google Trends: n=11; Baidu or Weibo index: n=2; Yahoo:
n=1) and social media data (Twitter: n=5). Other data sources
included electronic health or medical records (n=3) and Tencent
migration data (n=1). The most frequently studied diseases were
COVID-19 (n=10) [35,36,39,42,45-50], followed by influenza
(n=8) [37,40,43,44,51-54]. Only one study considered the Zika
virus [55], and another considered the trio of meningitis,
legionella pneumonia, and Ebola [56].
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Table 5. Summary of top 20 studies that addressed an infectious disease and utilized a big data source.

Big data sourceInfectious disease(s)Research objective and key findingsStudyRank

Internet search
engine

InfluenzaUsed internet search engine data for infectious diseases epidemiology and examined
the relationship between Yahoo search queries for influenza and actual influenza oc-
currence. They estimated linear models, using searches with 1-10–week lead times as

Polgreen et
al [37]

1

explanatory variables to predict the percentage of cultures positive for flu and deaths
attributable to pneumonia and influenza in the United States. The fitted models pre-
dicted an increase in cultures positive for influenza 1-3 weeks in advance of when
they occurred (P<.001), and similar models predicted an increase in mortality at-
tributable to pneumonia and influenza up to 5 weeks in advance (P<.001).

Google TrendsCOVID-19The research explored internet activity related to loss of smell in the United States and
seven European countries. Spearman rank correlation was used to assess the relationship

Walker et
al [45]

2

between loss-of-smell relative search volumes (RSVs), with the daily confirmed cases
of COVID-19 and deaths. Strong and significant correlations (P<.05) between daily
RSVs related to loss of smell, daily COVID-19 cases, and deaths were found, ranging
from 0.633 to 0.952.

Google TrendsCOVID-19Studied correlations between RSVs and the official COVID-19 cases reported by the
European Centre for Disease Control (ECDC) for some selected countries. They opted

Effenberg-
er et al [46]

3

for time-lag correlation analysis and observed a time lag of –11.5 days being the
highest correlation across all investigated countries.

Google TrendsCOVID-19Opted for machine/deep learning with Google Trends data. Linear regression and long
short-term memory (LSTM) models were used to estimate COVID-19 cases. They

Ayy-
oubzadeh
et al [47]

4

found that the linear regression model had the smaller root mean square error (RMSE)
and was the better predictive model. They also found the most predictive factors of
the model to be search terms of handwashing, hand sanitizer, and antiseptic topics.

Google TrendsCOVID-19Considered smaller spatial coverages in their Google Trends analysis. They retrieved
data from specific locations and subregions in Taiwan nationwide using defined search

Husnayain
et al [48]

5

terms related to the coronavirus, handwashing, and face masks. Their findings suggest
high to moderate correlations between RSVs and COVID-19 cases in Taipei (lag –3),
New Taipei (lag –2), Taoyuan (lag –2), Tainan (lag –1), Taichung (lag 0), and Kaoh-
siung (lag 0).

Google TrendsInfluenzaFound a strong correlation (Pearson r=0.91) between the number of clicks on a key-
word-triggered link in Google with epidemiological data from Canada’s flu season of
2004-2005.

Eysenbach
[40]

6

ARGOInfluenzaTo improve the existing Google Flu Trends (GFT), they proposed an influenza tracking
model, ARGO (AutoRegression with Google search data), that uses publicly available

Yang et al
[51]

7

online search data. Besides having a rigorous statistical foundation, ARGO outperforms
the latest GFT version. Not only does ARGO incorporate seasonality in influenza
epidemics but it also captures changes in online search behavior over time.

Google TrendsInfluenzaEvaluated the accuracy of each US GFT model by comparing weekly estimates of in-
fluenza-like illness (ILI) activity with the US Outpatient Influenza-like Illness

Cook et al
[52]

8

Surveillance Network (ILINet). They calculated the correlation and RMSE between
model estimates and ILINet for four seasons: pre-H1N1, Summer H1N1, Winter H1N1,
and H1N1 overall. Both models’ estimates were highly correlated with ILINet pre-
H1N1 and over the entire surveillance period, although the original model underesti-
mated the magnitude of ILI activity during the pre-H1N1 phase. The updated model
was more correlated with ILINet than the original model during Summer H1N1 (r =
0.95 and 0.29, respectively).

Baidu search in-
dex

InfluenzaUsed Baidu, a popular Chinese search index, to model and monitor influenza activity
in China. A comprehensive technique was presented for (1) keyword selection, (2)
keyword filtering, (3) index composition, and (4) modeling and detection of influenza

Yuan et al
[53]

9

activity in China. Sequential time series for the selected composite keyword index
was significantly correlated with official Chinese influenza cases. Further, 1-month-
ahead prediction of flu cases had a considerably small prediction error (mean absolute
percent error<11%).

DXY, Twitter
feeds, online
news services

COVID-19Used DXY, an online platform of the Chinese medical community, as a primary data
source to develop an online interactive dashboard. The dashboard is hosted by the
Center for Systems Science and Engineering (CSSE) at Johns Hopkins University,
United States. They monitored various Twitter feeds, online news services, and direct
communication sent through the dashboard to identify new cases.

Dong et al
[36]

10
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Big data sourceInfectious disease(s)Research objective and key findingsStudyRank

TwitterInfluenzaTo explore public concerns regarding rapidly evolving H1N1 activity, used Twitter
data and support vector regression to show that estimates of ILI accurately tracked
reported disease levels. They retrieved a large sample of public tweets that matched
a set of flu-related search terms.

Signorini
et al [44]

11

TwitterInfluenzaProposed and evaluated a complementary infoveillance approach using Twitter during
the 2009 H1N1 pandemic. They performed a content analysis of tweets and validated
Twitter as a real-time content and sentiment tracking tool. Infovigil, an infoveillance
technology, was used to record more than 2 million Twitter postings with the terms
“swine flu” and “H1N1.” According to content analysis, resource-related posts were
most commonly shared (52.6%). Misinformation occurred in 4.5% of the cases. News
websites were the most popular sources (23.2%), while government and health agencies
were linked only 1.5% of the time.

Chew and
Eyesen-
bach [54]

12

Electronic
health (medical)
records

COVID-19Used logistic regression models to explore the risk factors associated with in-hospital
deaths. They utilized a retrospective, multicenter cohort study that included all adult
inpatients with laboratory-confirmed COVID-19.

Zhou et al
[35]

13

Electronic
health (medical)
records

COVID-19This descriptive study detailed descriptive statistics of clinical features of patients in-
fected with COVD-19 in China as extracted from electronic medical records.

Huang et al
[39]

14

Electronic
health (medical)
records

COVID-19Developed OpenSAFELY, a secure health analytics platform that maintains patient
data in the current data center of a significant provider of primary care electronic health
records and serves 40% of all patients in England. OpenSAFELY was used to examine
factors associated with COVID-19–related deaths; 10,926 COVID-19–related deaths
were pseudonymously linked to primary care records of 17,278,392 persons.

Williamson
et al [49]

15

Tencent Migra-
tion data

COVID-19Used data on monthly airline bookings from the Official Aviation Guide and data on
human mobility across more than 300 prefecture-level Chinese cities from the Tencent
database. The reports released by the Chinese Center for Disease Control and Prevention
provided information on confirmed cases. A susceptible-exposed-infectious-recovered
(SEIR) model was used to simulate the epidemics in China’s main cities. They con-
cluded that, with a lag time of roughly 1-2 weeks behind the Wuhan outbreak, epidemics
were already expanding exponentially in several large cities throughout China, assuming
the transmissibility of SARS-CoV-2 was identical domestically and over time.

Wu et al
[50]

16

Google search-
es, Twitter mi-
croblogs, and
near real-time
hospital visit
records

InfluenzaPresented an ensemble-based machine learning method that leverages data from various
sources, including Google searches, Twitter microblogs, and near real-time hospital
visit records, to provide nowcast and forecast estimates of influenza activity in the
United States. Their method combines multiple ILI activity estimates, generated inde-
pendently with each data source, into a single prediction of ILI. Evaluation of the
predictive ability of their method suggests that it outperforms every prediction using
each data source independently. Additionally, it generated estimates 2 and 3 weeks
ahead of time with comparable accuracy to real-time forecasts from an autoregressive
model and predictions 1 week ahead of GFT’s real-time estimates.

Santillana
et al [43]

17

Google Trends,
Weibo index,
Baidu index

COVID-19Evaluated the predictive value of search data from Google Trends and two Chinese
social media platforms, Weibo index and Baidu index, for the COVID-19 epidemic
in China. They observed that the peak of internet searches and social media data about
the COVID-19 outbreak occurred 10-14 days earlier than the peak of daily incidences
in China. Internet searches and social media data were highly correlated (r>0.89) with
daily incidences.

Li et al
[42]

18

Google TrendsMeningitis, Legionel-
la pneumonia, and
Ebola

Compared the reliability of Google Trends in different clinical settings for common
diseases with lower media coverage and for less common diseases attracting major
media coverage. They carried out a Google Trends search using the keywords “renal
colic,” “epistaxis,” and “mushroom poisoning.” Additionally, a second search was
carried out for three clinical conditions (ie, “meningitis,” “Legionella pneumophila
pneumonia,” and “Ebola fever”). No correlation was observed between Google Trends
and epidemiology of renal colics, epistaxis, and mushroom poisoning. When searching
the term “mushroom” alone, the Google Trends search generated a seasonal pattern,
almost overlapping with the epidemiological profile.

Cervellin
et al [56]

19
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Big data sourceInfectious disease(s)Research objective and key findingsStudyRank

Google TrendsZikaDeveloped a dynamic forecasting model for Zika virus (ZIKV) based on Google
Trends. A strong correlation was found between Zika-related Google Trends and the
cumulative numbers of reported cases (confirmed, suspected, and total cases P<.001).
Further, an autoregressive integrated moving average (ARIMA) model (0,1,3) was
fitted for the dynamic estimation of ZIKV outbreaks. The forecasting results indicated
that the ARIMA model, which used the online search data as the external regressor to
enhance the forecasting model, is quite similar to the actual data during the Zika virus
epidemic.

Teng et al
[55]

20

Discussion

Principal Findings
Novel big data streams have created interesting opportunities
for infectious disease monitoring and control. The review of
the top 20 papers suggests the domination of high-volume
electronic health records and digital traces such as internet
searches and social media. Of note is the relatively increased
use of Google Trends. Most studies used Google Trends data
by correlating them with official data on disease occurrence,
spread, and outbreaks. Some of these studies further adopted
nowcasting for disease surveillance. However, using Google
Trends for forecasts and predictions in infectious diseases
epidemiology fills a gap in the extant literature. Few studies
have gone as far as predicting incidents and occurrences, even
though data on reported cases of various health concerns and
the associated Google Trends data have been correlated in many
studies. Predicting the future is hard; hence, more reliable and
efficient methodologies are needed for forecasting infectious
disease outbreaks.

There are a few drawbacks to digital trace data that should be
considered. Many of these data streams miss demographic
information such as age and gender, which is essential in almost
any epidemiological study. Besides, they represent a growing
but still limited population segment, with infants unfeatured
and fewer older adults than younger people. Geographic
heterogeneity in coverage exists, with underrepresentation in
developing countries, although these biases tend to fade and are
arguably less pronounced than those found in traditional global
surveillance systems. Further, the retrieved data are subject to
spatial and temporal uncertainty. Accordingly, hybrid systems
that supplement rather than replace conventional surveillance
systems as well as improve prospects for accurate infectious
disease models and forecasts should be developed.

Most studies, except for those in the United States and China,
were conducted in the European context. Thus, more studies
need to test the utility of these big data streams for infectious
disease epidemiology in the context of more countries, especially
in Africa. Future research questions should ask if any
cross-cultural differences between countries affect the adoption
and use of big data in infectious disease epidemiology.

The vast majority of infectious diseases have a global
distribution. Apart from the coronavirus, influenza, Zika, and

Ebola virus outbreaks that are featured in our review, the utility
of these big data sources for more infectious diseases should
be studied.

Limitations
A few limitations were inherent in our study. First, like any
bibliometric study, we are limited by the search terms and
database used. This study utilized English publications from
the WoS core collection; therefore, relevant publications may
have been missed. However, our choice of WoS was informed
by its greater coverage of high-impact journals. Second, some
studies may have been published after we concluded document
extraction. Accordingly, this study does not claim to be
exhaustive but rather extensive.

Future Research Agenda and Conclusions
The bibliometric study identified the United States and China
as research leaders in this field, with most affiliations from the
Harvard Medical School and the University of California. Top
authors were Zhang Yi and Li Xingwang. Journal of Medical
Internet Research and PLoS One are the most productive and
influential journals in this field. Internet searches and social
media data are the most utilized data sources. COVID-19 and
influenza were the most studied infectious diseases. The main
research themes in this area of research were disease monitoring
and surveillance, utility of electronic health (or medical) records,
methodology framework for infodemiology tools, and
machine/deep learning. Most research papers on big data in
infectious diseases epidemiology were published in outlets
related to computer science, public health, and health care
services.

Opportunities for future research are revealed directly from the
results of this study. Integrating multiple surveillance platforms,
including big data tools, are critical to better understanding
pathogen spread. It is also paramount for the research needs to
align with a global view of disease risk. The risk of infectious
disease is globally shared in an increasingly connected world.
The COVID-19 pandemic, including the rapid global circulation
of evolved strains, has emphasized the need for an
interdisciplinary, collaborative, global framework for infectious
disease research and control. There is a need to empower
epidemiologists and public health scientists to leverage insights
from big data for infectious disease prevention and control.
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