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Abstract

Background: Continuous monitoring of vital signs has the potential to assist in the recognition of deterioration of patients
admitted to the general ward. However, methods to efficiently process and use continuously measured vital sign data remain
unclear.

Objective: The aim of this study was to explore methods to summarize continuously measured vital sign data and evaluate their
association with respiratory insufficiency in COVID-19 patients at the general ward.

Methods: In this retrospective cohort study, we included patients admitted to a designated COVID-19 cohort ward equipped
with continuous vital sign monitoring. We collected continuously measured data of respiratory rate, heart rate, and oxygen
saturation. For each patient, 7 metrics to summarize vital sign data were calculated: mean, slope, variance, occurrence of a
threshold breach, number of episodes, total duration, and area above/under a threshold. These summary measures were calculated
over timeframes of either 4 or 8 hours, with a pause between the last data point and the endpoint (the “lead”) of 4, 2, 1, or 0 hours,
and with 3 predefined thresholds per vital sign. The association between each of the summary measures and the occurrence of
respiratory insufficiency was calculated using logistic regression analysis.

Results: Of the 429 patients that were monitored, 334 were included for analysis. Of these, 66 (19.8%) patients developed
respiratory insufficiency. Summarized continuously measured vital sign data in timeframes close to the endpoint showed stronger
associations than data measured further in the past (ie, lead 0 vs 1, 2, or 4 hours), and summarized estimates over 4 hours of data
had stronger associations than estimates taken over 8 hours of data. The mean was consistently strongly associated with respiratory
insufficiency for the three vital signs: in a 4-hour timeframe without a lead, the standardized odds ratio for heart rate, respiratory
rate, and oxygen saturation was 2.59 (99% CI 1.74-4.04), 5.05 (99% CI 2.87-10.03), and 3.16 (99% CI 1.78-6.26), respectively.
The strength of associations of summary measures varied per vital sign, timeframe, and lead.

Conclusions: The mean of a vital sign showed a relatively strong association with respiratory insufficiency for the majority of
vital signs and timeframes. The type of vital sign, length of the timeframe, and length of the lead influenced the strength of
associations. Highly associated summary measures and their combinations could be used in a clinical prediction score or algorithm
for an automatic alarm system.

(Interact J Med Res 2022;11(2):e40289) doi: 10.2196/40289
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Introduction

Hypoxic respiratory failure is a common complication of
COVID-19, caused by severe viral pneumonia or concomitant
pulmonary embolism [1,2]. Respiratory deterioration can occur
suddenly and sometimes without signs of dyspnea [3,4], which
complicates detection. Tools to assess the vital instability of
patients more frequently could help to detect respiratory
deterioration in a timely manner. Currently, most hospitals use
a form of early warning score as a “track-and-trigger” system
at the general ward to aid health care professionals in the
detection of deterioration [5]. Early warning scores can vary
from scores with a few physiological parameters, such as the
Modified Early Warning Score [6], to machine-learning
algorithms including baseline patient characteristics and
laboratory results [7]. However, these models use intermittent
measurements to update their prediction, and are therefore
limited by the frequency of spot-check measurements and
laboratory tests.

An alternative strategy to improve the early detection of
deterioration could be continuous monitoring including
assessment of vital signs. Continuous monitoring can be
beneficial in two ways. First, trends in vital signs over time
have been shown to have higher predictive accuracy than
isolated vital sign values when incorporated in prediction models
[8,9]. With continuous monitoring, trends in vital signs are
available at any point in time, and can therefore be used to make
up-to-date predictions more frequently. Unfortunately, prediction
models using continuously measured vital sign data at the
general ward are not yet readily available for clinical use. A
second benefit of continuous monitoring is that it enables health
care professionals to access the real-time vital sign status of a
patient remotely, and to use this information in clinical
decision-making [10]. However, nurses and physicians at
low-care wards are usually not used to, or trained in, evaluating
continuous vital sign data [11]. Current practice is therefore
mostly based on experience and expert opinion. Knowledge of
“what to look for” in vital sign trends could aid nurses and
physicians to interpret continuously measured data in a
meaningful way.

In this study, we assessed several measures to summarize
continuously measured vital sign data, and evaluated their
association with respiratory insufficiency in COVID-19 patients
admitted to the general ward. We aimed to find summary
measures that could be clinically helpful to recognize respiratory
deterioration early, which might further be useful to incorporate
into an algorithm for automatic alarming.

Methods

Population and Setting
At the beginning of April 2020, a continuous wireless system
for vital sign monitoring was introduced at the COVID-19 cohort
ward of the tertiary hospital University Medical Center Utrecht,
Utrecht, the Netherlands. This system recorded heart rate (HR)
and respiratory rate (RR) using a validated wireless patch sensor
[12] (Biosensor Voyage, Philips Electronics Netherlands BV),
and peripheral oxygen saturation (SpO2) via a finger pulse

oximeter (EarlyVue VS30, Philips Electronics Netherlands BV)
every 30 seconds approximated over the past 30 seconds. Data
were stored in the software program AnStat (CarePoint
Nederland BV, Ede, the Netherlands). Pulse oximeters were
delivered later than the wearable sensors (end of May 2020).
We included patients from April 2020 until March 1, 2021.
Patients were included if they were ≥18 years old, diagnosed
with COVID-19, and continuously monitored during their
admission at the study ward (either with the biosensor, pulse
oximeter, or both). Patients with a pacemaker did not receive a
sensor since RR measurements are unreliable in paced rhythms.
All continuously measured data were available in real time for
hospital staff, without a predefined protocol on how to use
continuously measured data or how to detect respiratory
insufficiency. The protocol in use for detecting deterioration in
general was the National Early Warning Score (NEWS) 2 [13].
The updated Charlson Comorbidity Index was used to assess
the baseline risk of 1-year mortality [14].

Ethical Considerations
The study was conducted according to the principles of the
Declaration of Helsinki and the General Data Protection
Regulation [15,16]. Ethical review was waived by the medical
ethical committee Utrecht (MEC-20-365). Patients were offered
the chance to opt out of retrospective data analyses during
hospital registration and again at hospital discharge, according
to the institutional protocol. The data were previously used in
a study of circadian rhythm in continuously measured vital signs
[17].

Primary Endpoint
The primary endpoint was respiratory insufficiency, which we
defined as the need for 15 L/min oxygen, high-flow nasal
oxygen therapy, or mechanical ventilation, whichever came
first. We did not deem intensive care unit (ICU) admission or
death to be a suitable endpoint since a substantial portion of the
population had treatment restrictions preventing them from
receiving cardiac resuscitation, mechanical ventilation, and/or
ICU admission. Moreover, high-flow nasal oxygen therapy was
also given at the general ward, since ICU beds were not always
available. The first documentation of the endpoint in the
electronic patient record was used as the time point for
respiratory insufficiency.

Data Selection
For each patient, we selected 12 hours of continuous vital sign
data. For patients who became respiratory-insufficient, we
selected the 12 hours of data prior to the onset of respiratory
insufficiency. The distribution of the timing of reaching the
endpoint in our cohort was approximately 40 hours after starting
monitoring, with a right-skewed distribution (ie, several cases
reached respiratory insufficiency before the 40-hour point). For
patients who did not reach this endpoint, we selected the data
from 24 hours up to 36 hours after admission (Figure 1). We
chose this window since the majority of patients were connected
to the monitoring system within 24 hours after admission.
Moreover, the median time until respiratory insufficiency in
our cohort was 40.6 hours (IQR 22.6-70.4) after starting
monitoring with a right-skewed distribution. By selecting 24-36
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hours after starting monitoring for the control group, the timing
for the timeframes for both the endpoint and control group were
fairly similar. Potential artefacts (RR<1/min or >80/min, HR
<30/min or >280/min, SpO2<50%, and large abrupt changes
in RR [>20 breaths/min] and HR [>25 beats/min] that lasted
for less than 2 minutes) were removed. For each patient, we
divided the selected data of 12 hours into 8 different timeframes
of either 4 or 8 hours long (Figure 1). We chose these lengths
because they clinically correlate with the length of a usual half
and full shift of hospital professionals. In addition, we shifted
timeframes either 0, 1, 2, or 4 hours from the end of the selected

12-hour data window (the “lead”) (Figure 1). For example, with
a lead of 4 hours, we assessed whether associations could
already be observed 4 hours before the onset of respiratory
insufficiency. To handle missing data, timeframes were only
included if the first measurement of a timeframe was within 30
minutes of the start of the timeframe and the last measurement
was within the last 30 minutes of the timeframe. We did this to
avoid selection of timeframes that were actually smaller than
assumed due to missing data (eg, if a timeframe of 8 hours only
contains 5 hours of data, it is not actually an 8-hour timeframe
but rather a 5-hour timeframe).

Figure 1. Data selection for continuous heart rate (HR), respiratory rate (RR), and oxygen saturation (SpO2).
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Selection of Summary Measures
As the continuous monitoring of vital signs provides
measurements twice every minute, we summarized the
continuously measured data into “summary measures.”
Summary measures are either unrelated to a certain threshold
(eg, the mean HR) or related to a threshold (eg, duration of
HR>89/min). For all threshold-related variables, we chose three
thresholds per vital sign. Thresholds for HR were based on the
three upper thresholds for tachycardia of the NEWS2: >90/min,
>110/min, and >130/min [13]. For tachypnea, we used the upper
two levels of the NEWS2, >20/min and >24/min, and added a
third level, >30/min, since the first upper threshold of the
NEWS2 would be met by almost every COVID-19 patient. We
used the lower two levels of SpO2, <94% and <92%, and added
<90% for similar reasons. We chose not to include bradycardia
or bradypnea since these were very uncommon as signs of
respiratory insufficiency in our population. An episode was
defined as more than one measurement (longer than 30 seconds)
above or under a certain threshold. Initially, we defined 12
summary measures based on the literature and clinical reasoning
[8,18] (Multimedia Appendix 1). Correlation plots of these
summary measures showed high correlations between several
measures. The summary measure “standard deviation” showed
high correlation with “variance” and was therefore eliminated.
“Mean duration,” “maximum duration,” and “total duration”
above/under the threshold were highly correlated; therefore, we
only included “total duration.” A similar choice was made for
area above/under the threshold. Ultimately, we selected seven
summary measures for analysis: three summary measures
unrelated to a threshold and four summary measures related to
a threshold (Figure 1).

Statistical Analysis
Baseline characteristics are described for both cohorts. For every
patient, all selected summary measures were calculated for the
eight timeframes. To investigate the crude association between
each of the summary measures and the development of
respiratory insufficiency, univariable logistic regression was
performed. Effect estimates are reported as odds ratios (ORs)
with accompanying CIs. Since the mean and slope of SpO2
have a negative relationship with the endpoint (a decrease in
oxygen saturation is associated with the endpoint instead of an
increase), the inverse effect estimate is reported for these two
summary measures of SpO2. As the selected summary measures
had different units of measurement (eg, duration in minutes,
area above the threshold in /min×duration or %×duration), we
could not directly compare their associations with each other
based on crude ORs. Therefore, we used standardized odds

ratios (sORs) to compare the association of different summary
measures with respiratory insufficiency on a similar magnitude.
Standardized summary measures for each patient were calculated
using the formula Z=(x–μ)/σ, where Z is the newly computed
standardized value, x is the summary measure for a particular
patient, μ is the mean of the same summary measure for all
patients in this timeframe, and σ is the standard deviation of all
patients in the respective timeframe. With these standardized
measures, the sORs were calculated. For example, an sOR of
2 for a certain summary measure means that if the standard
deviation of this measure increases by one, the association with
respiratory insufficiency increases by two.

To take multiple testing into account, we tested against a P
value of .01 for all aforementioned analyses. Bonferroni
adjustment was deemed too conservative since the chosen
summary measures are highly dependent on each other. We
used R software version 4.0.3 (R foundation for Statistical
Computing, Vienna, Austria 2021) for all analyses.

Results

Cohort Characteristics
The description of the cohort is provided in Table 1. Of the 429
patients that were monitored, 334 were included for analysis
(Figure 2), 66 (19.8%) of whom developed respiratory
insufficiency. These patients more often had pulmonary
embolism, ICU and medium-care unit admissions, treatment
restrictions, and had higher mortality rates (Table 1). Two
patients who did not experience respiratory insufficiency were
shortly admitted to a high-care unit during monitoring: one
patient required monitoring for severe hypokalemia, and the
other patient suffered a stroke and was admitted for
thrombolysis. All patients had available HR data. The sample
of patients with RR data was smaller (n=288) since the sensor
had to be calibrated to measure RR, which was not always
executed immediately. Due to late delivery and noncompliance
of patients with the pulse oximeter, SpO2 data were available
for only 238 patients. At baseline, these samples differed slightly
with respect to the number of patients that received
dexamethasone and the number of patients that reached the
endpoint (Multimedia Appendix 2). Overall, patients who
developed respiratory insufficiency had a higher occurrence of
threshold breaches, and spent more time above thresholds for
HR and RR and under the thresholds for SpO2 in both the 4-hour
and 8-hour timeframes (Multimedia Appendix 3). The mean
number of measurements per hour was 79 for 4-hour timeframes
and 74 for 8-hour timeframes. Of all timeframes used, 98.8%
contained at least 120 measurements.
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Table 1. Baseline characteristics and summary of available data.

Respiratory insufficiency (n=66)No respiratory insufficiency (n=268)All (N=334)Characteristic

67 (60-75)63 (55-72)65 (55.3-73.8)Age (years), median (IQR)

39 (59.1)168 (62.7)207 (62.0)Male sex, n (%)

0 (0-2)0 (0-1)0 (0-1)Charlson Comorbidity Index, median (IQR)

54 (81.8)208 (77.6)262 (78.4)Dexamethasone during admission, n (%)

10 (15.2)14 (5.2)24 (7.2)Diagnosed with pulmonary embolism, n (%)

29 (43.9)62 (23.1)91 (27.2)Treatment restrictionsa, n (%)

13 (9-24)6.5 (4.8-10)7 (5-12)Length of hospital stay, median (IQR)

27 (40.9)30 (11.2)57 (17.1)ICUb or MCUc admission, n (%)d

21 (31.8)2 (0.7)23 (6.9)Mortality, n (%)

Heart rate

66 (100.0)268 (100.0)334 (100.0)Patients with available data, n (%)

11.4 (1.7)11.8 (0.8)11.7 (1.1)Duration per patient (hours), mean (SD)

Respiratory rate

57 (86.4)231 (86.2)288 (86.2)Patients with available data, n (%)

11.1 (2.1)11.7 (1.1)11.6 (1.4)Duration per patient (hours), mean (SD)

Peripheral oxygen saturation

54 (81.8)184 (68.7)238 (71.3)Patients with available data, n (%)

10.9 (2.1)11.5 (1.1)11.4 (1.4)Duration per patient (hours), mean (SD)

aTreatment restrictions: no resuscitation, no ventilation, and/or no ICU admission.
bICU: intensive care unit.
cMCU: medium-care unit.
dIf a patient was monitored after ICU admission and did not reach the endpoint while being monitored, they were included in the “no respiratory
insufficiency” group.

Figure 2. Flowchart of patient inclusion based on data availability.
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Association of Summary Measures with Respiratory
Insufficiency
Since the highest crude ORs were observed in the 4-hour
timeframe without a lead, we have outlined the results of the
analysis for this timeframe in Table 2 and Table 3 for measures
without and with a threshold, respectively. The summary
measure with the highest crude OR was the occurrence of
RR>24/min (Table 3). For many summary measures of RR and
SpO2, CIs were extremely wide, in particular in summary
measures that were threshold-dependent and for which the

threshold was breached by the majority of the patients in an
outcome group. For example, a threshold breach for SpO2 of
<90% occurred in all but one case of patients who experienced
respiratory insufficiency, leading to a 99% CI of 1.64-915.0.
This phenomenon was also seen in other timeframes. When
comparing the standardized ORs in the 4-hour timeframe
without a lead, we found stronger associations for RR and SpO2
than for HR. The mean showed a strong association for all three
vital signs, with an sOR of 2.59 (99% CI 1.74-4.04) for HR,
5.05 (99% CI 2.87-10.03) for RR, and 3.16 (99% CI 1.78-6.26)
for SpO2.

Table 2. Results of univariable, nonstandardized, analyses for 4-hour timeframes without a lead for measures with no threshold.

VariancecSlopebMeanaParameter

P valueOR (99% CI)P valueOR (99% CI)P valueORd (99% CI)

.991.00 (0.99-1.00).641.02 (0.99-1.00)<.0011.06 (1.03-1.08)Heart rate

.0031.09 (1.01-1.17).091.30 (0.88-1.93)<.0011.44 (1.27-1.67Respiratory rate

<.0011.21 (1.09-1.38).031.79 (0.90-3.70)<.0011.61 (1.27-2.04)Oxygen saturation

aCalculated as /min for heart rate and respiratory rate and as % for oxygen saturation.
bCalculated as /min/hour for heart rate and respiratory rate and as %/hour for oxygen saturation.
cCalculated as /min2 for heart rate and respiratory rate and as %2 for oxygen saturation.
dOR: odds ratio.

Table 3. Results of univariable, nonstandardized, analyses for 4-hour timeframes without a lead for measures with a threshold.

Total area above threshold
(/10 min)

Total duration (min)Number of episodesOccurrenceThreshold

P valueOR (99% CI)P valueOR (99% CI)P valueOR (99% CI)P valueORa (99% CI)

Heart rate (/min)

<.0011.00 (1.00-1.01)<.0011.01 (1.01-1.01)<.0011.12 (1.03-1.23)<.0014.50 (1.95-11.8)>90

.041.00 (1.00-1.01).0021.01 (1.00-1.03).0051.16 (1.02-1.35)<.0012.79 (1.24-6.18)>110

.371.00 (0.99-1.02).081.01 (1.00-1.04).031.98 (1.04-5.01)<.0016.09 (1.56-25.5)>130

Respiratory rate (/min)

<.0011.04 (1.02-1.05)<.0011.02 (1.01-1.03).030.89 (0.77-1.01).057.35 (1.03-531.0)>20

<.0011.05 (1.03-1.08)<.0011.02 (1.01-1.03)<.0011.21 (1.09-1.35)<.00113.8 (3.68-103.4)>24

<.0011.07 (1.03-1.13)<.0011.02 (1.01-1.04)<.0011.59 (1.32-1.98)<.0018.53 (3.63-21.2)>29

Oxygen saturation (%)

<.0010.80 (0.67-0.91)<.0011.05 (1.02-1.09)<.0011.30 (1.11-1.56)<.00112.6 (4.11-47.7)<94

<.0010.88 (0.82-0.94)<.0011.03 (1.02-1.05)<.0011.30 (1.15-1.49)<.00112.3 (3.07-94.5)<92

<.0010.93 (0.90-0.96)<.0011.02 (1.01-1.03).0061.09 (1.01-1.19).0211.9 (1.64-915.0)<90

aOR: odds ratio.

Summary Measures for HR
The highest sORs were observed for mean HR in the 4-hour
timeframe without a lead (2.59, 99% CI 1.75-4.04) (Figure 3).
Only three summary measures were significantly associated
with respiratory insufficiency in all timeframes: the mean, total
duration >90/min, and total area above the threshold>110/min.

In general, associations were stronger for summary measures
in 4-hour timeframes compared with 8-hour timeframes. A
notable exception was the slope, for which the associations were
low or insignificant in three 4-hour timeframes, but relatively
strong in the 8-hour timeframes. Differences in sORs between
leads were small for most summary measures.
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Figure 3. Standardized odds ratios (ORs) for heart rate. AAT: area above threshold.

Summary Measures for RR
The highest sORs were observed for mean RR (sOR 5.05, 99%
CI 2.87-10.03) and the total duration of RR>20/min (sOR 4.69,
99% CI 2.55-10.29) in the 4-hour timeframe without a lead
(Figure 4). For most threshold-dependent summary measures,
the strength tended to decline when the lead increased, but still
reached significance. Summary measures calculated over 4-hour

timeframes had stronger associations than those calculated over
8-hour timeframes. Remarkably, the number of episodes
>20/min was negatively associated with respiratory
insufficiency, likely because to have multiple episodes above
20/min, a patient would also need periods of time with an RR
under 20/min, which was not exhibited by the patients showing
the most deterioration.
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Figure 4. Standardized odds ratios (ORs) for respiratory rate. AAT: area above threshold.

Summary Measures for Oxygen Saturation
For SpO2, CIs were generally wider due to the smaller sample
size. The strongest association was found in the 8-hour
timeframe without a lead, for occurrence of SpO2<90% (sOR
4.74, 99% CI 2.36-13.23) (Figure 5). SpO2 was the only vital
sign for which associations were generally slightly stronger in
8-hour timeframes. For many summary measures, the association

with respiratory insufficiency was evidently stronger in the
timeframes without a lead, especially for variance, total duration,
and total area under the threshold. The mean showed a weaker
association than some threshold-related summary measures
such as occurrence of SpO2<94% in 4-hour timeframes.
Nonetheless, the mean was significantly associated with
respiratory insufficiency in all timeframes.
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Figure 5. Standardized odds ratios (ORs) for oxygen saturation. AUT: area under threshold.

Discussion

Principal Findings
In this study, we aimed to explore which summary measures
for continuously measured HR, RR, and SpO2 data could be
helpful in recognizing imminent respiratory insufficiency in
COVID-19 patients at the general ward. We found that summary
measures over timeframes of continuously measured data close

to the endpoint of respiratory insufficiency showed stronger
associations than timeframes further removed, and that 4-hour
timeframes performed better than 8-hour timeframes. The
summary measure “mean” was consistently strongly associated
with respiratory insufficiency for all vital parameters. The
strength of associations of summary measures depended on the
vital sign, timeframe, and lead.
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Comparison With Prior Work
RR has repeatedly been marked as the best discriminator to
identify patients at risk for deterioration [19,20]. In our study,
we confirmed that RR showed stronger associations with
respiratory insufficiency than HR. SpO2 was also strongly
associated with respiratory insufficiency, which can partly be
explained by the population (COVID-19 patients) and the
endpoint (respiratory failure). In a previous study on trends in
vital signs of hospitalized patients, Churpek et al [8] used several
summary measures for trend analysis of intermittent data to
predict clinical deterioration. They found that the slope, mean,
and standard deviation were better predictors than the current
value for HR and RR, and the mean performed well for SpO2.
In our study, we confirmed a strong association of the mean of
all three vital parameters with respiratory insufficiency.
However, the slope and standard deviation were less
informative. This might be caused by differences between
intermittently and continuously measured vital signs. Due to
the high density of measurements, continuously monitored vital
sign data show more variance than intermittent data in our
experience, and are more subject to peaks and troughs depending
on a patient’s activity level. Akel et al [9] also found that the
(intermittently measured) maximum RR and HR were important
predictors. We did not use the maximum value, since we
expected the maximum value to rely highly on both activity
level and outliers (eg, due to coughing or talking), and would
therefore not be clinically useful. A recent study did use
summary measures for continuously measured vital signs (mean,
standard deviation, range, and mean absolute deviation) over
3-hour timeframes [21]. The authors created a machine-learned
model of these summary measures along with other data
features, and managed to predict complications in postoperative
patients with a lead of 12 hours. Unfortunately, this method
does not allow for comparison of the value of these different
summary measures. In our study, we only used leads up to 4
hours to limit the number of computations. We found that shorter
leads led to stronger associations. This might be an obvious
finding, as vital instability is often a gradual process of decline,
most pronounced at the end when a patient becomes
respiratory-insufficient [22]. However, this finding nuances
earlier failure-to-rescue statements and illustrates that the
information content is less dense 12 hours prior to the event
[23,24]. In current clinical practice (and at our study ward) the
NEWS2 is often used to detect deterioration [13]. Our thresholds
were based on this score. In the NEWS2, more severe threshold
breaches receive more points, and thus correspond with a higher
risk of poor outcome. From this context, we would have
expected summary measures of more severe thresholds to have
a stronger association with respiratory insufficiency.
Interestingly, this was not the case.

Methodological Decisions and Limitations
In this exploratory study, we made several methodological
decisions that affected the results. First, we chose a
cross-sectional method to determine the association of summary
models with respiratory insufficiency, by comparing patients
who reached the endpoint with those who did not. A longitudinal
assessment of risk for respiratory insufficiency (eg, using a
dynamic prediction model) might be an approach that is more

in line with clinical practice. In a dynamic prediction model,
previously recorded data of a patient can be included to update
the estimated patient’s risk of developing the outcome of interest
at consecutive time points. However, the sample sizes of existing
continuous monitoring studies are relatively small and the
populations are heterogeneous, which may complicate the
development of robust prediction models [10]. Larger studies
and open sharing of continuous data might speed up the process
of developing and validating such longitudinal dynamic models.
A second methodological key decision was to only select
summary measures, timeframes, and models that could easily
be understood by health care professionals. Hereby, we limit
the “black box” effect of complex models, for which the exact
computational procedure is opaque [25]. These models might
have better predictive accuracy, but are unintelligible for clinical
professionals, which makes clinicians reluctant to use and rely
on them [25]. For this explorative study, we aimed to increase
the understanding of the association between continuous vital
signs and deterioration, and therefore we chose a transparent
methodology. However, machine-learning models have proven
to be more accurate than current practice in several fields of
medicine [26]. In predicting deterioration, some studies have
shown that machine-learning models outperform “simple”
regression models [9,27,28]. In a recent study, a
machine-learning model was developed that uses several
summary measures of vital signs to predict the deterioration of
high-risk patients [21]. Explorative studies such as the present
study could provide insight into which summary measures to
include into such a machine-learning model [21]. A final
addition to a model with continuous monitoring data could be
nonvital sign parameters such as the amount of administered
oxygen. The combination of administered oxygen with RR and
SpO2 has previously shown to accurately predict respiratory
insufficiency in COVID-19 patients [29]. Regardless of the type
of prediction model or algorithm that is constructed using
continuously measured vital sign data, any model should be
well calibrated and be externally validated before
implementation in clinical practice [30].

Strengths and Limitations
Beside the above-mentioned methodological considerations,
this study has several limitations. We relied on a small
convenience sample size, which resulted in limited accuracy,
and we were unable to validate our findings in a larger data set.
A significant portion of the initial sample had to be excluded
owing to lack of continuous monitoring data within the needed
12-hour timeframe for multiple reasons such as loss of
connection with the patch, nurses that were not able to or forgot
to connect a patient to the system, or patients who reached the
endpoint before or within a short time after getting the patch.
The exact reasons for these periods of missing data are hard to
reconstruct retrospectively. Additionally, there were differences
in the number of patients with available data for each vital sign.
Patients who were relatively less ill wore the pulse oximeter
less often, because they found it annoying, they were mobilizing
beyond the reach of the monitor, or the nurse agreed it was no
longer necessary to monitor SpO2. The smaller sample size
with a relatively high percentage of patients reaching the
endpoint might have strengthened the association between SpO2

Interact J Med Res 2022 | vol. 11 | iss. 2 | e40289 | p. 10https://www.i-jmr.org/2022/2/e40289
(page number not for citation purposes)

van Goor et alINTERACTIVE JOURNAL OF MEDICAL RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


and respiratory insufficiency. For control patients, we included
the 24-36 hours of data following admission to the ward. This
was a pragmatic decision, but the choice of timeframes early in
the admission period could have influenced the results.
Nevertheless, respiratory insufficiency also mostly occurred
early in the admission, and therefore the timing of the selected
data of the control group and the respiratory insufficiency group
was fairly similar. Conclusions can only be drawn for
COVID-19 patients. For other patient populations, alternative
vital signs and summary measures might be more informative
[31]. Since the continuous monitoring system was not
implemented alongside standard intermittent monitoring, we
could not compare the performance of summary measures with
care as usual. All continuous data were visible to the nurses and
physicians during the study. The vital sign aberrations they
spotted during monitoring will have influenced their decision
to start treatment, thus influencing the endpoint. However, staff
was limited in the options for additional treatment, and thereby
also limited in their influence to avoid the endpoint. Moreover,
we do believe the decision to start 15 L/min oxygen therapy,
high-flow oxygen therapy, or mechanical ventilation was not
solely based on the continuous data but was rather mostly based
on the overall clinical condition of the patient. Due to the
retrospective nature of the study, we relied on documentation
in the electronic patient record to determine the time point of
respiratory insufficiency. A prospective design might result in
a more accurate estimation of the timing of onset.

Considerations for Future Research
Summary measures of vital signs that show a strong association
with the occurrence of respiratory insufficiency could be helpful
in several ways. First, they might be used in a clinical score for
direct use by nurses and physicians. For intermittently measured
vital signs, the early warning score created both a framework
to measure vital stability and a language for nurses to
communicate instability to a physician [32]. Nurses are
empowered by these aspects of the early warning score.
Furthermore, they can use the early warning score to easily
package and summarize information about a patient, which
helps physicians to prioritize care [32]. For continuous data, no
such language or score currently exists to communicate
observations of continuously measured vital signs. Summary
measures could be used to create such as score. For example,

the most strongly associated summary measures could be used
to create an easy-to-use prognostic score, or could directly aid
nurses in physicians to interpret, summarize, and articulate
continuous monitoring data of COVID-19 patients.

Second, summary measures may be useful to be incorporated
in an automatic alarm system, especially under circumstances
where the nurse-to-patient ratio is low. For example, during a
night shift, an alarm system with high predictive accuracy that
could detect deteriorating patients that otherwise might have
been missed would be valuable [33]. However, clinical scores
might not be suitable for automatic alarming. Early warning
scores have previously been applied as an alarm system by using
the means of continuously monitored vital signs over a short
period (eg, 5 minutes) as input values [34,35]. The downside
of this strategy is that some thresholds of commonly used early
warning scores, such as RR>20/min or HR>90/min in the
NEWS2, are easily breached, especially in active patients. In
our study, the mean RR for patients who did not experience
respiratory insufficiency was 20.5/min; thus, half of all
measurements would score a point on the NEWS2. In a recent
study, both patients who did and did not experience deterioration
met the criteria for a high early warning score if continuous
monitoring of vital signs was used [35]. This high number of
threshold breaches could, if followed up with an alarm, lead to
alarm fatigue [36]. To develop an adequate alarm system, a new
predictive model for continuous monitoring data might be more
helpful, in which summary measures could be used as input
values instead of single threshold breaches. Since such an alarm
system can operate in the background and does not have to be
used by hospital professionals directly, it would allow for more
complexity than the clinical score that is used on the ward. The
previously mentioned study by Kristinsson et al [21] is a
promising example.

Conclusions
We explored several possible ways to summarize continuous
vital sign data of COVID-19 patients on the general ward. The
mean showed a relatively strong association with respiratory
insufficiency for HR, RR, and SpO2. Overall, shorter timeframes
with smaller leads showed stronger associations. Highly
associated summary measures and their combinations could be
used in a clinical prediction score or algorithm for an automatic
alarm system.

Data Availability
The data sets analyzed during this study are stored in the data repository DataverseNL [37]. Metadata are publicly available. The
data themselves are not publicly available due to their privacy-sensitive nature, but can be requested via DataverseNL.
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RR: respiratory rate
sOR: standardized odds ratio
SpO2: peripheral oxygen saturation
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