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Abstract

Radiology, being one of the younger disciplines of medicine with a history of just over a century, has witnessed tremendous
technological advancements and has revolutionized the way we practice medicine today. In the last few decades, medical imaging
modalities have generated seismic amounts of medical data. The development and adoption of artificial intelligence applications
using this data will lead to the next phase of evolution in radiology. It will include automating laborious manual tasks such as
annotations, report generation, etc, along with the initial radiological assessment of patients and imaging features to aid radiologists
in their diagnostic and treatment planning workflow. We propose a level-wise classification for the progression of automation in
radiology, explaining artificial intelligence assistance at each level with the corresponding challenges and solutions. We hope
that such discussions can help us address challenges in a structured way and take the necessary steps to ensure the smooth adoption
of new technologies in radiology.

(Interact J Med Res 2022;11(2):e38655) doi: 10.2196/38655
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Introduction

Advancements in artificial intelligence (AI) and machine
learning have enabled the automation of time-consuming and
manual tasks across different industries [1]. With substantial
developments in the digital acquisition of data and
improvements in machine learning and computing
infrastructures, AI applications are also expanding into
disciplines that were previously considered the exclusive
province of human expertise [2]. From automobiles to the health
care sector, the world is actively adopting AI to transform these
respective industries.

The confluence of information and communication technologies
with automotive technologies has resulted in vehicle autonomy.
This growth is expected to continue in the future due to
increasing consumer demand, reduction in the cost of vehicle
components, and improved reliability [3]. The Society of
Automotive Engineers has classified the progression of driving

automation into 6 levels [4], ranging from No Automation (Level
0) to Full Automation (Level 5). The levels of driving
automation are characterized by the specific roles played by
each of the 3 principal players, that is, the human user (driver),
the driving automation system, and other vehicle components.
As vehicle autonomy increases with each level of automation,
driver intervention is reduced [4].

Similar to the automobile industry, AI is progressively
transforming the landscape of health care and biomedical
research. A simulated deployment of natural language
processing–based classification algorithm has been shown to
enable automated assignment of computed topographic and
magnetic resonance radiology protocols with minimal errors,
resulting in a high-quality and efficient radiology workflow [5].
More recently, applications of diagnostic imaging systems have
expanded the capabilities of AI in the previously unexplored
and more complex health care sector [2]. In radiology, AI
applications are being widely adopted for assisted image
acquisition, postprocessing, automated diagnosis, and report
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generation. Automation in this field is still in its infancy, and
several clinical and ethical challenges must be addressed before
further progress can be made [6].

In this perspective, we attempt to categorize and map the
advancements and challenges of automation in radiology into
6 levels, similar to driving automation, with radiologists, AI
systems, and advanced technologies playing important roles at
each level. The subsequent parts of the paper briefly discuss
each level, its technical challenges, plausible solutions, and
enabling factors required for transitioning into the next level.

Levels of Automation in Radiology

The advancement of AI in the health sector has substantially
bridged the gap between computation and radiology, paving
the way for automation in radiology practice. We describe the
6 levels of automation in radiology using a taxonomy similar
to that used in driving automation. We further attempt to provide
a futuristic vision of the challenges that the radiology field may
encounter as we progress toward the complete automation of
this field. Figure 1 illustrates different levels of automation in
radiology, including the challenges at each stage and the factors
that enable the progression between levels.

Figure 1. Flowchart depicting the various levels of automation in radiology practice. At each level, the role of the radiologist and artificial intelligence
(AI) is outlined, along with the enabling factors required to mitigate the potential challenges for progression to the next level. PACS: picture archiving
and communication systems.

Level 0: No Automation

Level 0, also known as No Automation, is the stage where a
radiologist manually performs every task from image acquisition
and radiographic film processing to diagnostic analysis without
the assistance of AI. We are well past this stage as the recent
advances in medical imaging modalities have enabled digital
storage and processing of the scans along with some automated
assistance to aid in the imaging workflow.

Level 1: Radiologist Assistance

At Level 1 automation, a radiologist performs most tasks
manually with assistance from machines. Recent technological
advancements have digitized medical scans, making it easier
for radiologists to store, maintain, and distribute data.
Furthermore, newer solutions include features such as
contrast-brightness adjustment, assisted stitching of scans,
assisted focus adjustment, etc, which simplify the imaging
workflow and enable detailed radiological analysis. With
everything digitized, these modalities generate enormous
amounts of data, and the biggest challenge at this stage is the
proper maintenance and storage of data [7]. This is where

technologies such as picture archiving and communication
systems have provided an economical solution to compress and
store data for easy retrieval and sharing [8]. With the
advancement in automation, the radiology field is currently
experiencing a major paradigm shift in the principles and
practices of many computer-based tools used in clinical practice
[9].

Level 2: Partial Automation

Partial automation in radiology refers to the use of
computer-assisted diagnostic modalities to automate
prioritization. However, the automation at level 2 requires
radiologist supervision, and the diagnostic decision is not final
without the radiologist’s approval. With the advancement of
picture archiving and communication systems technology,
radiology practices frequently consider upgrades and renovations
to further improve efficiency. For example, radiomics is an
emerging subfield of machine learning that converts
radiographic images into mineable high-dimensional data by
providing additional features to analyze and characterize the
disease. Machine learning algorithms can be used to extract
features from radiographic images that can help make prognostic
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decisions [10]. Feature extraction includes the texture, intensity,
shape, and geometry of the region of interest [11]. Besides
feature extraction from images, clinical and molecular profile
data could sometimes be essential to comprehend complex
diseases and ensure the right diagnosis to deliver the best
possible treatment [12]. The amalgamation of machine learning,
radiomics, and clinical information has the potential to improve
its application in precision medicine and clinical practices. Since
these technologies are still in their nascent stages of
development, radiologists will most likely use them as ancillary
tools in making final decisions.

The progress at this level of automation is slow and can be
attributed to three major factors:

1. Lack of high-quality data: There is a limited amount of
good quality medical data because the annotation and
documented diagnosis by an expert are time-consuming
and expensive processes [13]. This becomes a challenge
when developing an AI system that can generalize well
across unseen data, because the performance of machine
learning models is significantly influenced by the size,
characteristics, and quality of the data used to train them.
The problem of insufficient training data, particularly in
cases of rare diseases, can be addressed through data
augmentation, in which synthetic data are generated to
increase the prevalence of the target category, making the
models more robust for analyzing independent information
on the test sets [14]. Generative adversarial networks are
the most commonly used neural network models for
generating and augmenting synthetic images for rare
diseases, such as rheumatoid arthritis and sickle cell
diseases. Although these techniques allow models to be
trained on sparse data sets and produce promising results,
the adoption of generative adversarial networks in medical
imaging is still in its early stages [15].

2. Stringent data laws: Medical data are often governed by
several data security laws, regulations, and compliances,
making it extremely difficult to share and use this data
outside a clinical setting [6]. Collaborations between
hospitals and tech companies are critical to bypass the
barriers of data-sharing laws and make the best use of rich
medical data to develop advanced solutions for automated
and accurate diagnoses.

3. Cost of technology adoption: Current algorithms for
analyzing radiological scans are computationally resource
intensive, which significantly increases the cost of adopting
these technologies in clinical practices. Therefore, it is
important to develop low-power and cost-effective solutions
that can be easily adopted by medical organizations. Edge
devices can be used as low-cost prescreening tools as they
can be deployed remotely and deliver instant results without
consuming much bandwidth [16].

Level 3: Conditional Automation

Unlike partial automation, where the final decision is entirely
dependent on the radiologist, the systems at Level 3: Conditional
Automation are robust enough to diagnose and make decisions
under a predefined set of conditions (ie, those used to train the

model) without radiologist supervision. If these conditions are
not met, a radiologist must be available to override the AI
analysis. The efficiency of human-AI collaboration in clinical
radiology is dependent on clinicians properly comprehending
and trusting the AI system [17]. One of the major requirements
to enable such human-AI interfaces in radiological workflows
is an effective and consistent mapping of explainability with
causability [18]. Specialized explainer systems of explainable
AI (widely acknowledged as an important feature of practical
deployment of AI models) aim at explaining AI inferences to
human users [19]. Explainability in radiology can be improved
by using localization models, which can highlight the region of
suspected abnormality (region of interest) in the scan, instead
of using classification models, which only indicate the presence
or absence of an abnormality [20]. Although an explainable
system does not refer to an explicit human model and only
indicates or highlights the decision-relevant parts of the AI
model (ie, parts that contributed to a specific prediction),
causability refers primarily to a human-understandable model.
Causability is the degree to which an explanation of a statement
to a human expert achieves a defined level of causal
understanding while also being effective, efficient, and
satisfactory within the context of use [18].

Radiology scans often suffer from high interreader variability
that arises when 2 or more readers disagree on the results of a
scan. This may lead to uncertainty in the ground truth labels.
The problem of ambiguous ground truth can be mitigated by
using expert adjudication [21] or multiphasic review [22] to
create high-quality labels, which may help yield better models
than other approaches in improving model performance on
original labels [20]. Additionally, imaging protocols,
manufacturers of imaging modalities, and the process of storing
and processing medical data differ between organizations, which
impedes the use of data from different sources for AI
applications [23]. These factors result in the development of AI
systems on a limited distribution of data, making them highly
susceptible to failure if certain conditions, such as demographics,
race, gender, time, etc, are not met. For example, Dou et al [24]
developed a COVID-19 detection model using data sets from
internal hospitals in Hong Kong. The model performed
extremely well in identifying abnormalities in Chinese data sets
but underperformed in German data sets with different
population demographics [24]. Cross-center training of the AI
model for different demographics and distinct cohort features
would help the model learn from multiple sources and mitigate
the problem of generalizability.

Level 4: High Automation

Advancing from level 3, the AI systems at Level 4: High
Automation would make decisions without the assistance of a
radiologist. Human intervention would only be required in
complex cases where the AI requests it. Such systems would
require extensive clinical validations before they could be
reliably used. As summarized by Kulkarni et al [20], these
systems would need to undergo internal as well as external
validations to evaluate the system’s performance on unseen
data. The Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis (TRIPOD)
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statement [25] specifies guidelines for reporting the development
and validation of such diagnostic or prognostic models. Since
these AI systems must work independently of conditions, they
must generalize across a wide variety of data from different
sources without inducing any bias from the training data. For
example, Obermeyer et al [26] exposed a shortcoming in a
widely used algorithm in the health care system that identified
Black patients as being healthier than equally sick White
patients. The racial bias exhibited by this system led to an
unequal distribution of health care benefits to Black patients.

Elgendi et al [27] observed that adopting simple data
augmentation and image processing techniques such as
normalization, histogram matching, and image reorientation
can aid in standardizing images from different sources. The
standardization of annotation, data processing, and storage
protocols are also vital for this data to be efficiently used for
the development of AI systems. To learn and understand the
differences and nuances of abnormalities in images from
different regions, these AI systems would need to be developed
on radiographic image data from various sources around the
world.

The sharing of medical data has its own logistic and legal
challenges as several government policies and compliances such
as the Health Insurance Portability and Accountability Act [28]
restrict the cross-border sharing of medical data. This is where
privacy-preserving distributed learning techniques such as
federated learning [29] and split learning [30] could play an
important role in training the AI models at the source without
moving the data to a centralized location. In the current state of
development, the adoption of these distributed learning
techniques is challenging because of the high costs involved in
software development and infrastructure maintenance at multiple
locations [31]. Despite these challenges, distributed learning
appears to be a viable and promising approach to develop AI
systems on multiple centralized data sets without the egress of
sensitive medical data [32].

Level 5: Full Automation

Level 5, referred to as Full Automation, is the ultimate stage of
automation in radiology, where an AI application would be
capable of end-to-end analysis of a case, from the initial
diagnosis to automatic report generation. With the
standardization of diagnostic reporting protocols and the recent
advances in natural language generation models such as
Generative Pre-trained Transformer 3 [33], results can be
automatically reported in a structured format.

With such a high level of automation, it is crucial to maintain
these AI systems at their optimal performance levels; however,
their efficiency often deteriorates over time [34]. This
phenomenon is referred to as model decay. One of the reasons
for model decay is covariate shift [35], where the distribution
of the input data is different from the training data. Another
reason for such a decay could be prior probability shift [36],
where the distribution of the target or the prevalence of an
abnormality in a population changes. The change in the
definition of the relation between the input and target data,
referred to as concept drift [37], could also contribute to model

decay. These changes may occur gradually over time or
suddenly when the AI system is deployed in a different location
with a different population. Therefore, it is crucial to
continuously monitor these AI systems and fine-tune them as
required to maintain optimal performance [20].

The complete automation of radiology in clinical practice will
be challenged by medico-legal concerns about assigning liability
in cases of AI misdiagnosis. A challenging legal question is
whether doctors, radiologists, and health care providers would
still be held accountable to bear ultimate legal responsibilities
when they are no longer liable for the interpretation of
radiological studies or would the data scientists and the
manufacturers involved in the development and implementation
of AI systems be held responsible [38]. It is important to focus
on ethical questions concerning the implications of full
automation for patient-centered medical care. In any event,
responsibility must be assigned to humans for their involvement
in this extremely complex field of AI in medicine [39]. Another
challenge at this stage would be to address the fear among
radiologists of AI systems taking over their jobs [40]. However,
jobs will not be lost, but rather, roles will be redefined. With
the influx of new data, radiologists would be the information
specialists capable of piloting AI and guiding medical data to
improve patient care [41]. AI will undoubtedly be an integral
part of medicine, particularly radiology, but the final decision
will be made by human radiologists because only a human
expert’s knowledge and subject expertise can enable a reliable
diagnosis [42]. We believe that AI systems will become smart
assistants for radiologists, capable of automatically performing
mundane tasks, such as preliminary diagnosis, annotations,
report generation, etc, under radiologist supervision. This will
not only reduce the workload of radiologists but also allow them
to collaborate with clinicians and actively participate in other
aspects of patient care.

Conclusion

The advancement in AI is bringing the field of radiology to a
higher level of automation. We propose a level-wise
classification system for automation in radiology to elucidate
the step-by-step adoption of AI in clinical practice. We also
highlight the concerns and challenges that must be addressed
as radiology advances toward complete automation. This
includes the development of AI models that are transparent,
interpretable, trustworthy, and resilient to adversarial attacks
in medical settings. Developers of AI algorithms must be
cautious of potential risks such as unintended discriminatory
bias, inadvertent fitting of confounders, model decay, the
constraints of generalization to unseen populations, and the
imminent repercussions of new algorithms on clinical outcomes.

There are numerous ethical issues and unanticipated
repercussions associated with the introduction of high-level
automation in health care. To address these issues, regulatory
standards for the development, management, and acquisition
of technology and AI; public-private institutional collaborations;
and ethical and responsible application of AI in the health care
sector are required [43]. Most people envision AI fully replacing
the driver or completely bypassing the doctor when they think
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about complete automation in the automobile or health care
industry, respectively. Although there could be many good
reasons to entirely replace drivers with autonomous vehicles,
this approach could be detrimental in the health care sector. We
must acknowledge the distinct advantages of augmentations
over complete automation in health care practices [44]. In this
regard, “expert-in-the-loop” ideology facilitates the collaboration

between AI scientists, software developers, and expert
radiologists. This substantially improves the quality and quantity
of expert clinical feedback and guidance at every stage of
development. As we move closer to the complete automation
of radiological analysis, such collaborations are crucial for
expediting the automation process.
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