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Abstract

Background: Unfractionated heparin (UFH) is an anticoagulant drug that is considered a high-risk medication because an
excessive dose can cause bleeding, whereas an insufficient dose can lead to a recurrent embolic event. Therapeutic response to
the initiation of intravenous UFH is monitored using activated partial thromboplastin time (aPTT) as a measure of blood clotting
time. Clinicians iteratively adjust the dose of UFH toward a target, indication-defined therapeutic aPTT range using nomograms,
but this process can be imprecise and can take ≥36 hours to achieve the target range. Thus, a more efficient approach is required.

Objective: In this study, we aimed to develop and validate a machine learning (ML) algorithm to predict aPTT within 12 hours
after a specified bolus and maintenance dose of UFH.

Methods: This was a retrospective cohort study of 3019 patient episodes of care from January 2017 to August 2020 using data
collected from electronic health records of 5 hospitals in Queensland, Australia. Data from 4 hospitals were used to build and
test ensemble models using cross-validation, whereas data from the fifth hospital were used for external validation. We built 2
ML models: a regression model to predict the aPTT value after a UFH bolus dose and a multiclass model to predict the aPTT,
classified as subtherapeutic (aPTT <70 seconds), therapeutic (aPTT 70-100 seconds), or supratherapeutic (aPTT >100 seconds).
Modeling was performed using Driverless AI (H2O), an automated ML tool, and 17 different experiments were iteratively
conducted to optimize model accuracy.

Results: In predicting aPTT, the best performing model was an ensemble with 4x LightGBM models with a root mean square
error of 31.35 (SD 1.37). In predicting the aPTT class using a repurposed data set, the best performing ensemble model achieved
an accuracy of 0.599 (SD 0.0289) and an area under the receiver operating characteristic curve of 0.735. External validation
yielded similar results: root mean square error of 30.52 (SD 1.29) for the aPTT prediction model, and accuracy of 0.568 (SD
0.0315) and area under the receiver operating characteristic curve of 0.724 for the aPTT multiclassification model.

Conclusions: To the best of our knowledge, this is the first ML model applied to intravenous UFH dosing that has been developed
and externally validated in a multisite adult general medical and surgical inpatient setting. We present the processes of data
collection, preparation, and feature engineering for replication.
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Introduction

Background
Unfractionated heparin (UFH) is a parenteral anticoagulant used
for the prevention and treatment of arterial and venous
thromboembolic diseases [1,2]. UFH consists of a heterogeneous
mixture of polysaccharides with varying molecular lengths and
weights; therefore, direct monitoring of serum drug
concentrations to guide optimal dosing is not possible [3,4].
Instead, a surrogate of bleeding time, activated partial
thromboplastin time (aPTT), is used to monitor the
dose-dependent response [5]. The initial bolus and maintenance
doses of UFH are estimated by clinicians using weight-based
formulas (units of UFH/kg for bolus and units or UFH kg/hour
for maintenance), with the aim of achieving a defined
therapeutic aPTT range. Future doses are continually adjusted
to maintain this therapeutic range (TR) [6-8], which varies
depending on the therapeutic indication [1]. An aPTT value
below the TR (subtherapeutic) is linked to reduced efficacy
(high probability of recurrence or progression of
thromboembolic events), whereas values above the TR
(supratherapeutic) are linked to the risk of bleeding [9,10]. For
patients with life-threatening thromboembolic events, clinicians
aim to rapidly achieve a therapeutic aPTT and maintain a TR
for the duration of UFH therapy. In the hospital setting, UFH
therapy commences with a bolus (loading) dose followed by a
maintenance infusion, and an aPPT is quantified within 12 hours
[1,6]. This result provides guidance for further dosing, and
clinicians often rely on dosing nomograms (Multimedia
Appendix 1).

UFH is an extremely complex and difficult drug to accurately
dose. The UFH molecules are distributed freely throughout the
body; bind to many physiological sites including clotting factors,
endothelial cells, and macrophages [4]; and are eliminated from
the body via several physiological pathways. This creates
marked variation in its pharmacokinetics and dose response
between patients, such that there is no standardized
one-dose-fits-all strategy [8-11]. Despite the use of nomograms
to optimize dosing, it is difficult to achieve and maintain a TR
that places patients at risk. For example, excessive dosing may
result in up to 5.5% of patients having a bleeding event [12].
Studies evaluating metrics of safety and effectiveness, such as
time to TR, time within TR, and percentage of patients within
TR, have demonstrated an inability to predict optimal dosing
with confidence [13-15]. The time to TR after initiation of UFH
can be as long as 60 hours in some studies, and a recent local
study of 200 patients showed a median time to TR of 36 hours
[16]. In another study, only 29% of the patients had 2
consecutive therapeutic aPTTs [15] throughout the duration of
treatment. Even in large clinical trials with strict patient
monitoring, the percentage of patients attaining aPTT in TR
within 48 hours is less than 50% [17-19]. Clearly, many factors
influence bodily responses to UFH, which are independent of

body weight and are not accounted for in current dosing
strategies [7].

Related Work
Machine learning (ML) is a subset of artificial intelligence that
identifies patterns in large data sets and encodes them into
models to predict new data [20,21]. ML has great potential for
providing decision support tools in modern health care
[20,22-24], which are developed using large volumes of
digitized patient data contained within electronic health records
(EHRs) [25-27]. To achieve optimal dosing of UFH, ML
methods can potentially be used to develop models that make
accurate predictions for the target aPTT in response to UFH
dosing. However, there have been few studies to date on how
to use ML to optimize UFH dosing [28]. A recent systematic
review [28] identified 8 studies using ML for UFH. Out of these,
4 studies predicted aPTT [29-32]; 1 study [33] reported
out-of-TR surrogates for aPTT, including bleeding and clotting
events; and the remaining 3 studies [34-36] evaluated UFH
dosing in hemodialysis patients [28]. To date, 5 studies
[29,30,32,33,36] have been conducted in the intensive care units
(ICUs) of hospitals in the United States using retrospective data
and 3 studies in the dialysis setting [34-36].

A variety of modeling approaches were reported. Four studies
reported supervised learning methods including random forests,
adaptive boosting, extreme gradient boosting, and neural
networks [30,32,34,36]. One study used an unsupervised
approach to train the model, which was then fine-tuned using
a supervised approach [34]. Three studies also used regression
analysis [29,30,34], 2 studies used a reinforcement learning
approach to develop their models [33,36], and 1 study [31]
compared neural networks with nonlinear mixed-effects
modeling methods. Studies have reported a wide range of
performance metrics including accuracy, precision, recall, area
under the receiver operating characteristic curve (AUC),
F1-score (a combination of precision and recall), and coincidence
rates. The study by Su et al [32] reported the best model
accuracy at 88%. Ghassemi et al [29,30] reported 2 studies on
modeling for the prediction of UFH dosing, with 1 study
reporting a model developed using multinomial regression to
predict subtherapeutic and supratherapeutic aPTT, which had
superior performance to ML methods. Their later work explored
4 modeling methods, including reinforcement learning and
neural networks, with modest accuracies ranging from 0.56 to
0.6. Overall, the multinomial regression model outperformed
the ML methods and was a more appealing model because of
its clinical interpretability, which is important in the context of
implementation and stakeholder engagement. All studies
provided limited reporting of reproducibility, and, except for
one study by Smith et al [31], none were validated in a new
cohort. Most recently, Li et al [37] reported the development
and validation of a multiclass aPTT model and subsequent dose
prediction application for use in the ICU setting using a shallow
neural network approach. The top 5 features for both data sets
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included a patient’s baseline aPTT, patient weight, total UFH
administered, serum creatinine, and age. The model reported
performance metrics similar to those of prior studies, with an
F1-score of 0.887 to 0.925. As with prior studies, the study
population was limited to ICU patients and may not be
generalizable to other clinical settings. It also does not provide
guidance on the exact dose changes that clinicians desire at the
point of care.

As evidenced by a recent systematic review [28], no identified
models had their impact evaluated within routine clinical
practice, and research remains limited and of variable quality.
In this body of work, we aimed to develop a model that could
be used in hospital general medical and surgical wards, which
overcomes the limitations of previous studies with regard to
methods, reporting, and external validation.

Methods

Data Flow
Figure 1 depicts the data flow and architecture of the project,
which is divided into 5 phases. Phase 1 outlines the data

collection in which data files were extracted from EHRs from
5 hospitals, of which 4 were used in model development and
the fifth was retained for external validation. In phase 2, the 2
data sets underwent the same phase 2 transformations and
mapping process (data blending and imputation), except that
the clusters built using the training data set were used unchanged
in the validation data set to prevent outcome leakage, where
parts of the training data used to create a model were not
available at the time of prediction. After data blending, we
conducted feature engineering in phase 3, which was again
applied to both data sets using the same process. The outputs
from the feature-engineering workflow were 2 fact tables: the
engineered training data, which were input into the H2O
Driverless AI tool to build the ML models (phase 4), and the
validation data used to validate the model predictions (phase
5). The same pipeline structure, as shown in Figure 1, was
applied in developing and validating a regression model to
predict the exact aPTT value and a multiclass model to predict
the aPTT class (subtherapeutic, therapeutic, and
supratherapeutic), with minor differences in data blending to
prepare the outcome columns.

Figure 1. Experiment setup including training and validation processes. GCUH: Gold Coast University Hospital; ML: machine learning; CSV: comma
separated values.

Ethics Approval
This research work was granted a low-risk research protocol
approval and a waiver of consent by the Metro South Health
(MSH) Human Research Ethics Committee for ethical and
scientific review (reference number LNR/2019/QMS/54581).
We confirm that the work completed in this project is consistent
with ethics approval of the acquired research.

Data Collection
EHR data were collected retrospectively for patients admitted
between 2017 and 2020 on consecutive admissions to 5 digital
hospitals (one health district) in Queensland, Australia, in which
UFH was administered for therapeutic purposes. Model
development and external validation were undertaken within
the Clinical Informatics Division of MSH. We collected data
on UFH that were prescribed using a power plan, which is an
EHR decision support tool for specific clinical scenarios that
facilitates timely ordering of laboratory tests, medication
prescribing, and interdisciplinary communication. Four
adult-specific power plans that MSH clinicians use, which were

used to identify patients eligible for study inclusion, were acute
coronary syndrome, deep vein thrombosis or pulmonary
embolism, bridging therapy for oral anticoagulants (warfarin
replacement), and low–target-range aPTT anticoagulation for
neurosurgical patients. This initial patient cohort was then
filtered based on the selection criteria defined by the clinician
authors:

• Inclusion criteria: adult patients administered a UFH bolus
dose and a maintenance infusion for more than 48 hours,
had a documented power plan, and had an aPTT result
recorded within 12 hours of the UFH bolus dose.

• Exclusion criteria: ICU patients as ICUs use an ICU-specific
EHR that is not linked or integrated into the general EHR
system in MSH.

A total of 2783 hospital admissions were identified, involving
2470 patients at the 4 hospitals in MSH whose data were used
for model development and 236 hospital admissions involving
221 patients at the hospital where data were used for external
validation.
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Next, we determined the data tables to be collected from the
EHRs and generated an initial list of features. Using previous
studies in the literature and the content expertise of collaborating
clinicians, we identified 15 data tables that were intentionally
inclusive at this stage, while recognizing that some would be
removed later if found to be irrelevant or if the data were
incomplete. Multimedia Appendix 2 lists the tables showing
the number of features extracted from each table before and
after the feature-engineering phase.

Data Blending and Imputation
Using the identifier codes of enrolled patients, an aPTT fact
table was built by blending UFH bolus dose administration with
subsequent aPTT assay results. The rules for inclusion were
defined in collaboration between data scientists and clinician
researchers to be consistent with the existing literature and to
eliminate data noise and ensure data consistency. The following
rules were applied:

• A UFH bolus dose was included if it was a de novo (first)
dose or was administered after at least 6 hours following
prior UFH therapy cessation (equal to approximately 5 UFH
elimination half-lives to ensure that no drug remained) [38].

• The aPTT results recorded for the first time after 12 hours
of the UFH bolus dose were considered invalid.

• UFH maintenance infusions (maintenance dose) were
considered invalid if they were not administered or
intravenous infusions were completed, stopped, or paused
for more than 1 hour before aPTT testing [39].

The generation of the aPTT fact table is illustrated in Figure 2.
The data blending process was completed in 6 steps, used patient
identifiers, and recorded time stamps to connect and filter the
data records. The blending process was performed to satisfy the
inclusion or exclusion rules previously defined, resulting in a

data set of 2158 records for the model development data set and
236 records for the external validation data set.

During the blending of UFH and aPTT data, several features
were identified based on clinician input as listed in Textbox 1.
For the other tables (Figure S1 in Multimedia Appendix 2), we
excluded all records documented after the time the target aPTT
had been performed, as derived from the fact table. Looking at
the counts, we excluded 3 tables as they had an insufficient
number of examples to incorporate into the model, with each
having less than (278/2783, 9.98%) of the total records in the
fact table. During the blending process, we first identified the
columns of interest in each of the remaining tables. For some
features, such as age and sex, data were added to the aPTT fact
table with minor or no processing. Other features, to be useful,
required data to be aggregated, grouped, or converted in some
way. For example, a less granular mapping was applied to 166
distinct order catalogs of medications to categorize them into
medication classes. However, during modeling, only the
antimicrobial group was used because of uneven distributions
across the data set for the other groups. A complete feature list
with details of the applied processing is included in Table S2
in Multimedia Appendix 2.

Dealing with missing data was the next step after blending all
the identified tables into a single fact table (Table 1; Figure S2
in Multimedia Appendix 2 provides more detail on all features
and definitions). In general, we used clinician expertise to decide
on the imputation methods for achieving the most accurate
representation of missing values. Imputing the missing baseline
aPTT (Table 1) assumed a normal physiological aPTT value of
30 seconds on the basis of the literature [40] and the median
result derived from our training data set. Missing values of
patients height and weight were imputed to the mean value of
the cohort after grouping by age (bin interval of 10 years), sex,
and marital status.

Figure 2. Unfractionated heparin and activated partial thromboplastin time tables blending. aPTT: activated partial thromboplastin time; UFH:
unfractionated heparin.

Textbox 1. Features identified during blending of activated partial thromboplastin time (aPTT) and unfractionated heparin (UFH) administration data.

Feature and description

• Baseline aPTT: aPTT result preceding the current (target) aPTT

• Baseline aPTT minutes: time (in) between the baseline aPTT and target aPTT

• UFH bolus minutes: time (in) between the bolus dose and target aPTT

• UFH maintenance minutes: time (in minutes) between the maintenance start and target aPTT
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Table 1. Missing data handling.

ImputationFeatures

Missing values and values completed more than 24 hours before UFHb bolus administration were imputed
to 30 seconds, whereas baseline aPTT minutes are imputed to 1440 (24 hours) minutes for those records.

Baseline aPTTa and baseline aPTT
minutes

Encounters with no measurements were imputed to the averages for their age, marital status, and sex (as
recorded in the patient electronic health record).

Weight and height

If the results are missing or occurred more than 12 hours before the target aPTT, they are imputed using
centroid values of k-means clustering with k=10.

Vital Signs features

If the results are missing or occurred more than 1 week before the target aPTT, they are imputed using k-
means clustering using centroid value with k=10.

Pathology results

Imputed to 0 where missing or older than 1 week before target aPTT.Waterlow score and ADLsc

aaPPT: activated partial thromboplastin time.
bUFH: unfractionated heparin.
cADL: activity of daily living.

Feature Engineering and Data Transformation
In this phase, the blended and imputed aPTT fact table was used
initially to conduct univariate analysis and data visualization,
which aimed to inform decisions about building new features
and transforming data. However, this process was not separate
from data modeling; rather, it was an iterative process where
ML models were built on initial features that changed and
evolved, thus serving as new feature inputs to the next cycle of
modeling. Multimedia Appendix 3 provides details and
visualizations of Pearson correlations between features and
outcomes in our aPTT fact table.

Table 2 summarizes the demographic data and important
features that are most relevant to the blended (training) data set.
The definitions of diagnoses were based on the International
Classification of Diseases (ICD)-10 codes; however, we were
only able to include categories with large frequencies; that is,
ACS and VTE. Other diagnoses were grouped as other. All
patients’ recorded codes during their admission were used in
the grouping process.

The reported aPTT result showed a distribution heavily skewed
to the right (Figure 3) and contained outliers, which negatively
impacted the performance of a regression model. Although
several statistical methods, such as quadratic mean learning
[41], can be used to correct this, we chose, on the basis of
clinician expertise, to reduce the negative impact of skewness
by introducing a floor and ceiling value to target aPTT of 30
and 150. Values less than 30 seconds reflect normal
physiological values. The impact of using floor and ceiling
values is visualized in residual graphs in Figure S1 in
Multimedia Appendix 3, and more feature analysis information
is presented in Figures S3-S5 in Multimedia Appendix 2.

Four calculated features were introduced. The first one was the
UFH maintenance dose where, unlike the single bolus dose
administration, the cumulative maintenance dose was derived
based on the total units in the syringe, the infusion period, and
the total infusion time before the target aPTT test was
performed, excluding any stoppage periods of the infusion
(calculation described as follows):

UFHMaintinance = (UFH syringe size / Total infusion
period) × (infusion time-infusion stop)

The standard amount of UFH contained in a syringe was 25,000
units (50 mL syringe, 500 IU/mL), and this, together with the
total time for the syringe to be emptied with no interruption,
indicated the infusion rate as the number of UFH units infused
per minute. The second part of the equation (infusion
time—infusion stop) aimed to calculate the exact infusion period
in minutes. The 3 other calculated features were body size, UFH
bolus time, and UFH bolus time; body size is calculated using
the following equations:

Size=Weight / Height

UFH Bolus Time = UFH Bolus Dose / Time to aPTT

UFH Bolus Time and Size = Size × UFH Bolus Time

Finally, we added a cosine cyclical transformation of aPTT time
to build 3 features representing the aPTT day of the week, hour
of the day, and month of the year. At the end of this phase, we
obtained 93 features in the aPTT fact table. Depending on the
data distributions, continuous variables were scaled using the
Yeo-Johnson transformation [42] from the SciPy Python library
[40] or a min-max transformation. Details about the
transformation method applied for every feature are provided
in Figure S2 in Multimedia Appendix 2, and equation details
are available in Multimedia Appendix 4.
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Table 2. Baseline characteristics of training data set (all records, N=2783).

ValuesFeature

Sex, n (%)

1898 (68.2)Male

885 (31.8)Female

Diagnosis, n (%)

818 (29.4)ACSa

540 (19.4)VTEb

65.8 (14.6)Age (years), mean (SD)

87.8 (26.7)Weight (kg), mean (SD)

36 (11.1)Baseline aPTTc (seconds), mean (SD)

4713 (1467)UFHd bolus dose (units), mean (SD)

6767 (4993)UFH maintenance (units), mean (SD)

364.1 (149)Time between UFH bolus and aPTT (minutes), mean (SD)

aACS: acute coronary syndrome.
bVTE: venous thromboembolism.
caPTT: activated partial thromboplastin time.
dUFH: unfractionated heparin.

Figure 3. Frequencies of target activated partial thromboplastin time results with bin size=20. aPTT: activated partial thromboplastin time.

Modeling

Outcomes and Setup
In this phase, 2 models were developed: a regression model for
predicting the target aPTT result and a multiclassification model
for predicting the aPTT class as subtherapeutic, therapeutic, or
supratherapeutic. To identify the optimal model in each case,
several models were iteratively tested, with each iteration
evaluated using 3-fold cross-validation involving 67 by 33 data
splits, where all cases could be used for both model training
and internal validation. Cross-validation was repeated 3 times

to ensure that the validation metrics were robust, as the training
data sets were relatively small. The predictive metrics of all
iterations were averaged to obtain the overall results for the
model.

The modeling process was completed using the H2O Driverless
AI tool, which is an auto-ML tool that takes tabular data as input
and builds supervised models automatically using the available
open-source ML libraries in Python and R. It also automates
model validation, tuning, and selection to achieve an accuracy
level equivalent to that of the manually built models. The tool
also performs an iterative feature evolution process during
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modeling to discover new features. Supervised ML models
supported by H2O Driverless AI include XGBoost [43],
LightGBM [44], generalized linear models [45], TensorFlow
[42], RuleFit [46], and FTRL [47] (followed by the regularized
leader) [48]. The tool will generate and test large numbers of
models by using different open-source algorithms, undertake
hyperparameter tuning, try different feature subsets, and
combine models using different methods. After generating
hundreds of different models and combinations (ensembles),
the tool recommended the most accurate model built for
deployment.

Ensemble Regression Model
We built an ensemble regression model to predict aPTT values
within 12 hours of a UFH bolus dose. The optimized
performance metric was the root mean square error (RMSE).
Other reported metrics include the mean absolute error and

coefficient of determination (R2).

During this experiment, 1126 alternative models were trained,
including constant predictions, the LightGBM [44] and XGBoost
[43] algorithms, and ensemble models. After the feature
evolution process, the 93 original features were converted into
188 features, with the contributing features on every model
automatically selected by the H2O Driverless AI tool during
the training process. We built several baseline regression
models, against which the performance of the H2O Driverless
AI ensemble model was compared. For all these baseline
models, we used the same set of features used to build the
ensemble model, except for those evolved during the modeling
process using the H2O Driverless AI tool. The first baseline
model was built using the tool but as a single model rather than
an ensemble. The best model returned by the tool is the
XGBoost model. The other baseline models were developed
using the Python scikit-learn library, where we tested 3 different
linear regression models: Ridge [49], Lasso [50], and ElasticNet
[51].

Ensemble Multiclassification Model
We built a multiclassification model using the same training
data set to predict the target aPTT class, where aPTT<70 seconds
was considered subtherapeutic, aPTT between 70 and 100
seconds as therapeutic, and aPTT>100 seconds as
supratherapeutic. In this modeling process, we optimized the
accuracy and reported several other metrics relevant to
multiclassification, including macroprecision, macrorecall,
macro–F1-score, and macroaverage one class vs rest classes
AUCs [52].

In total, 457 different models were trained and tested using the
H2O Driverless AI tool. Similar to the regression models, the
tool tested constant predictions, the LightGBM [44] and

XGBoost [43] algorithms, and ensemble models. The evolved
and original features used in the modeling process totaled 2196
features. The tool ranked the models based on their performance
and recommended the best performing model producing the
best accuracy. The other baseline models were developed using
the Python scikit-learn library: logistic regression, logistic
regression with recursive feature elimination, support vector
machine [53] using a linear support vector classifier [54], and
support vector machine using polynomial support vector
classifier.

External Validation
External validation was performed using data obtained from
patient records at a fifth hospital (Gold Coast University
Hospital), which had an exact schema and table structure as the
training set. The final data set comprised 236 records, after
applying the same inclusion or exclusion criteria as the training
data set. We used the method proposed by Archer et al [55] to
calculate the sample size sufficient to validate the proposed

model and achieve a preselected target for the CI of R2. The
equations and calculation details are provided in Multimedia
Appendix 4. The equation generated a minimum sample size
of at least 235 participants, which was achieved.

Results

Ensemble Regression Model
The best performing model was an ensemble of 4x LightGBM
models that were linearly blended. LightGBM is a
gradient-boosting framework that uses tree-based learning
algorithms [44]. The model relied on 134 features, some of
which are well-established as influencing responses to UFH,
such as weight and baseline aPTT, with others first identified
in this experiment, of which the most important was the time
between when the bolus dose was administered and when the
aPTT was measured (Table 3). The bolus dose time, baseline
aPTT, age, and bolus dose were also relatively important.
Weight, size (weight divided by height), and hematological and
biochemical parameters, including serum creatinine level, as a
measure of renal function, were also among the top 20 features.
Table 4 shows the description and selected list of the LightGBM
hyperparameters.

The performance metrics of our ensemble and all the baseline
models are listed in Table 5. The H2O Driverless AI ensemble
model had best performance with RMSE 31.35 (SD 1.37),
residual charts provided in Figure S1 in Multimedia Appendix
3. In addition, this baseline model outperformed all other
Python-based linear regression models because the tool tested
several algorithms, as previously mentioned, and evolved
additional features during the modeling process.
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Table 3. Top 10 most important features with relative importance scores.

Relative importanceFeature

1Minutes between UFHa bolus and aPTTb

0.58UFH bolus time

0.41Baseline aPTT

0.37Age

0.3UFH bolus dose

0.25Height

0.23UFH maintinance

0.22UFH bolus size calculated

0.21Weight

0.195Size calculated

aUFH: unfractionated heparin.
baPTT: activated partial thromboplastin time.

Table 4. Descriptions of contributing models in the final regression ensemble model.

Lambda L2Lambda L1Max binsLearning rateMax leavesFeature fractionFitted featuresModel weightModel typeID

0.501280.01160.6650.3333LightGBM0

0.501280.01160.6690.1042LightGBM1

1002560.01640.8950.1667LightGBM2

20640.01160.41340.3958LightGBM3

Table 5. Performance of regression models for predicting activated partial thromboplastin time results.

R2aRoot mean square errorMean absolute errorModelTool

0.35531.3524.61 cFinal ensemble modelH2O DAIb

0.3132.3325.51XGBoostH2O DAI

0.24433.826.89Linear regressionSKlearnd

0.24433.7926.93Ridge regressionSKlearn

0.24933.6826.93Lasso regressionSKlearn

0.24733.7227.15Elasticnet regressionSKlearn

aR2 coefficient of determination.
bDAI: Driverless AI.
cMinimum error rate.
dSKlearn: a machine learning library in Python.

Ensemble Multiclassification Model
The best performing model was a linear blend ensemble of 4
different models with different weights, 2 XGBoost models and
2 LightGBM models (Table 6).

The performance metrics of the ensemble multiclassification
model and baseline models built using the SKlearn library in
Python are presented in Table 7, with the ensemble model
showing superior performance across all metrics, with an
accuracy of 0.599 and macro–F1-score of 0.613. The simple
logistic regression model in Python was the second-best
performer, highlighting the efficiency of using auto-ML tools

for feature engineering, evolution, and model tuning and
blending.

Figure 4 shows the confusion matrix for the ensemble model,
demonstrating very good accuracy (0.88) for the subtherapeutic
class aPTT<70 seconds, intermediate accuracy (0.512 for the
supratherapeutic class aPTT>100 seconds, and poor accuracy
(0.098) for the therapeutic class aPTT 70 to 100 seconds. This
lower accuracy is most likely a result of class imbalance due to
the underrepresentation of the therapeutic class in the data set.
Nevertheless, predicting patients at risk of recurrent
thromboembolic events from underdosing or at risk of bleeding
from overdosing is important for clinicians and patients.
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For the multiclassification ensemble model, the validation set
returned an accuracy of 0.568 (95% CI 0.538-0.598) and an
AUC of 0.724 (95% CI 0.714-0.734), which also compares
favorably with the corresponding values for the training set
cross-validation of 0.599 and 0.735, respectively. In surveying

the confusion matrix (Figure 5), the model demonstrated similar
accuracy for each class as the training model: 0.899 for the
aPTT class <70 seconds, 0.492 for the aPTT class >100 seconds,
and 0.078 for the aPTT class 70 to 100 seconds.

Table 6. Descriptions of contributing models in the final multiclassification ensemble model.

Lambda L2Lambda L1Max binsLearning rateMax leavesFeature fractionFitted featuresModel weightModel typeID

0.501280.0180.219000.3067XGBoost0

502560.0180.519140.2XGBoost1

0.50640.01160.6780.4LightGBM2

002560.01640.81830.0933LightGBM3

Table 7. Performance of multiclassification models in predicting activated partial thromboplastin time class.

Macro-AUCaMacro–F1-scoreMacrorecallMacroprecisionAccuracyModelTool

0.7350.6130.6860.5540.599 cFinal ensemble modelH2O DAIb

0.6910.520.560.510.562Logistic regressionSKlearn

0.6870.50.560.490.557Logistic regression with RFEdSKlearn

0.6790.5170.540.510.535SVMe—linear SVCfSKlearn

0.6140.4570.450.460.451SVM—polynomial SVCSKlearn

aAUC: area under the receiver operating characteristic curve.
bDAI: Driverless AI.
cBest calculated accuracy.
dRFE: recursive feature elimination.
eSVM: support vector machine.
fSVC: support vector classifier.

Figure 4. Multiclassification confusion matrix. aPTT: activated partial thromboplastin time.

Figure 5. Multiclassification confusion matrix for external validation. aPTT: activated partial thromboplastin time.
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Discussion

Principal Findings
This study reports the development and external validation of
an ML model for the prediction of aPTT following bolus and
maintenance dosing with UFH. The ML models were developed
using EHR data from 4 Australian hospitals with the best
performing approach, producing an ensemble with 4x
LightGBM models with an RMSE of 31.35. As a
multiclassification task, the ensemble model achieved an
accuracy of 0.599 and an AUC of 0.735. External validation in
a new patient cohort at a fifth hospital showed similar results,
with an RMSE of 30.52 for the prediction model and an
accuracy of 0.568 and AUC of 0.724 for the multiclassification
model.

The final model relied on 93 features, including body weight,
baseline aPTT, and bolus dose, with others novel to this study
and contemporary clinical knowledge, such as hematological
and biochemical features (Multimedia Appendices 2 and 3).
The most important clinically informative novel features were
the time between administration of the bolus dose and aPTT,
age, and baseline aPTT. Baseline aPTT, maintenance UFH dose,
and time between bolus administration and aPTT as a grouped
feature, which had the highest relative importance (Table 3).
UFH is considered a high-risk drug with a narrow therapeutic
window, and therefore requires patient-specific dosing to ensure
safety and effectiveness [1,7]. Determining the optimal initial
bolus and maintenance dosing for UFH therapy is challenging
because of the many unknown physiological variables that may
contribute to its anticoagulant response. Initial bolus dosing
based on body weight is currently preferred [19]; however, other
variables must influence the response [56,57]. Nomograms and
regular aPTT monitoring, which guide subsequent dose
adjustments, increase the proportion of patients achieving a
target therapeutic aPTT range [6,8]. Unfortunately, local data
derived from 2783 patient episodes suggest that this target is
achieved in as few as 23.08% of the patients administered UFH.

As UFH is difficult to administer, new anticoagulants have been
introduced in the health setting. Although these new
anticoagulants, such as direct-acting oral anticoagulants and
low–molecular-weight UFHs, have similar effectiveness to UFH
in thromboembolic disease, UFH retains an extensive role in
hospital practice because of its several advantages [1,2]. Current
dosing is based on nomograms, drug action can be quickly
reversed if required, the response can be monitored using aPTT,
and its short half-life ensures that the drug is quickly eliminated
if urgent surgery is required, or bleeding occurs. As per our
data, UFH is still a commonly used drug that requires better
dosing and monitoring to ensure patient safety than what is
currently achievable. Using ML to derive a predictive model
offers a possible approach to more accurately predict individual
responses to an initial bolus dose of UFH. This information will
assist clinicians in estimating the optimal bolus dose.
Developing, testing, and deploying these models is becoming
more feasible with the advent of large, digitized data sets such
as EHRs [22,26,58]; systems that have been implemented in
most large hospitals in Australia. Our study demonstrates that

many other features exist beyond the traditional weight-based
calculations to determine the best UFH bolus dose. This has the
potential to improve the safety profile of UFH. EHR data now
afford the opportunity to start using model-based dosing
strategies and the ability to develop continuous learning ML
models in the future [59].

ML is increasingly being used in early phase drug development
[22,26,58] and postmarketing dose design, particularly for other
high-risk drugs with narrow therapeutic windows, such as
warfarin [56,57,60,61], insulin [62], digoxin [63],
immunosuppressants, and chemotherapeutics [64]. Using ML
models to guide dosing of UFH in acutely ill, unstable medical
and surgical patients to minimize thromboembolic events and
bleeding events is an important advancement. In developing
such models, as shown in our study, a collaborative approach
whereby clinicians and data informaticians work in close
consultation is essential. Our study used researchers, data
engineers, hematologists, pharmacists, and medical practitioners
in its design and conduct. This is essential for developing usable
artificial intelligence solutions in hospital settings [65].

Comparison With Prior Work
In this study, an ensemble approach with supervised learning
was used. Five other studies have reported using supervised
learning in developing models to assist with UFH dosing
[29,30,32,34,36]. To date, although 3 report accuracy [32,33,37]
superior to that of our ensemble approach, these models were
restricted to ICU data sets from the United States and China
and are, therefore, not generalizable to the general medical and
surgical wards of hospitals where UFH is most frequently
administered. Furthermore, compared with all existing studies
of ML in UFH dosing, ours was the only one, apart from one
small external validation in a hemodialysis setting [31,66], to
evaluate model performance when applied to new unseen data.
External validation is considered an essential step before
assessing the efficacy in controlled clinical trials and subsequent
implementation in routine practice [65,67].

Future Work
The stage is now set for a feasibility study, the implementation
of the model in hospital clinical workflows, and, if successful,
further evaluation of clinical utility in a trial comparing current
standard practice with model-guided bolus dosing. Implementing
the model in routine practice requires an easily accessible
decision support platform that can prepopulate most, if not all,
the features within the model from the EHR without the need
for manual input by clinicians. The model will need to rapidly
provide guidance at the exact time of decision-making and will
not require end users to undertake extensive training in its use
[68,69].

Limitations
Our model was developed and validated using data from EHRs
of 5 hospitals and, therefore, should be tested in other health
care systems that use EHRs. The modeling approach only
applies to adult inpatients admitted to general medical and
surgical specialties. ICU patients were excluded from this study.
Furthermore, this modeling approach was intended for the
prediction of aPTT after a prespecified bolus and maintenance
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dose, and as such, further work is required to allow dose
calculation and adjustment.

Some features (such as activities of daily living assessments),
which were included in the 93 influential features, may not
always be available at the time of dosing UFH, and appropriate
surrogates should be considered in future iterations of the model.
It is also important to consider the level of data standardization
within the EHR data sets, which may limit the applicability and
usefulness of ML-derived models [70]. For example, differences
in how features are measured (eg, the weight and height using
different scales), differences in aPTT assays, or different
locations of data in EHR may affect model performance and
generalizability.

Finally, similar to many other dosing regimens for intravenous
drugs, a perfect algorithm for UFH is probably not achievable,
as UFH interacts with a myriad of hematological and
physiological factors that may affect its anticoagulant effect.
Many of these cannot be measured or remain unknown. The
goal of our study was to produce and validate a predictive model

for UFH dosing that is significantly more accurate than the
current weight-based nomograms that have been in use for many
years.

Conclusions
This study reports the development and validation of an
auto–ML-built ensemble modeling approach for predicting
aPTT results and determining their therapeutic classification
within 12 hours of administration of a de novo UFH bolus
accompanied by a UFH maintenance infusion. ML models were
developed using retrospective data from the EHRs of the 4
hospitals. These models were shown to have a consistent
performance when applied to an external data set from a fifth
hospital. To our knowledge, this is the first study of ML
regression and multiclassification models applied to UFH dosing
that has used auto-ML tools in model development and
conducted external validation. Future work should include the
optimization of model performance and its redesign and
incorporation into a dose calculation software tool that can be
easily used by clinicians at the point of care.
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